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1. Introduction

The energy scale of hadronisation processes in high energy collisions is
of the order of ΛQCD ≈ 200MeV and thus the processes cannot be de-
scribed by perturbative quantum chromodynamics (pQCD). However, an
understanding of the mechanism of hadronisation is essential for the in-
terpretation of some hadronic observables such as single particle spectra
measured in proton–proton or in heavy-ion reactions. In pQCD-improved
parton model calculations [1], hadron production is described by fragmenta-
tion functions [2,3]. Though the evolution of these fragmentation functions
with the scale Q2 can be understood within the framework of pQCD [4,5,6],
their actual form at a given scale Q2 = s0 cannot be deduced. In this paper,
we point out that the distribution of hadrons emitted by the leading parton
of a jet can be deduced from simple statistical considerations too.
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2. Microcanonical jet fragmentation

If the process of the creation of hadrons h1, . . . , hN by the leading parton
pi of a jet with multiplicity N is such, that the corresponding cross-section

dσh1, ..., hN = |M |2 δ(4)

(∑
j

pµhj
− Pµpi

)
dΩ ∝ δ

(∑
j

εhj
− Ejet

)
dΩ (1)

is simply proportional to the phase space available for the hadrons, restricted
only by the energy conservation, then the hadrons created throughout the
fragmentation process form a microcanonical enlemble. In Eq. (1), Ω is the
phase space of the created hadrons, pµhj

and εhj
are the four-momentum and

energy of the hadron hj , P
µ
pi is the four-momentum of the leading parton pi,

Ejet = P 0
pi
is the energy of the jet, finallyM is the matrix amplitude describ-

ing the process. Microcanonical treatment of hadron production has also
been proposed in [7, 8, 9, 10] for proton–proton reactions, and in [11, 12, 13]
for e+e− reactions.

The energy distribution of a hadron inside the jet with multiplicity N
reads [13]

fN (ε) = Amc (1− x)D(N−1)−1 , (2)

where x = ε/Ejet, ε is the energy of the hadron, D is the effective dimen-
sionality of the jet and Amc =

(
DN−1

D (N−1)−1

)
D/( kD EDjet ) follows from the

normalisation condition

1 =
∫
dΩp

∫
dp pD−1fN (ε) , (3)

with kD =
∫
dΩp being the angular part of the momentum space integral.

Eq. (2) follows from the microcanonical momentum space volume at fixed
energy and multiplicity,

ΩN (E) =
1
N !

∫ ∏
dDpi δ

(
E −

∑
εi

)
=
kND Γ (D)

N !
EN D−1 , (4)

whence the one-particle distribution is obtained as

fN (ε) ∝ ΩN−1(E − ε)
ΩN (E)

. (5)

If the particles in the ensemble interact so that the one-particle energies
εi and the total energy are connected via the formula

L(E) =
∑

L(εi) , (6)



Generalised Microcanonical Statistics and Fragmentation in . . . 365

with L(ε) = (1/a) ln(1 + aε), as has been proposed in [14, 15, 16], then the
N particle constrained phase space volume ΩN (E) becomes

D = 1 , ΩN (L) ∝ LN−1 e aL ,

D = 2 , ΩN (L) ∝
N−1∑
j=0

(2N − j − 2)!
j! (N − j − 1)!

(−)N [aL]j
{
e aL + (−)j+1e 2aL

}
,

D = 3 , ΩN (L) ∝
N−1∑
j=0

N−j−1∑
k=0

(N + k − 1)!
j! k!

(2N − j − k − 2)!
(N − j − k − 1)!

(−)N−j−1

× [aL]j
{

(−)N−j−1

22N−j−k−1
e aL + (−)j+k+1e 2aL +

e 3aL

2N+k

}
,

(7)

in D = 1, 2 and 3 dimensions. The energy distribution of a single par-
ticle follows from Eqs. (5) and (7). Results of numerical simulations and
analytical calculations for D = 3 are shown in Fig. 1.

Fig. 1. Single particle distributions in ensembles consisting of 2, 3 and 4 particles
with interaction described in Eq. (6), inD = 3 dimensions. Solid curves are analytic
results obtained from Eqs. (5) and (7); histograms are results of 105 simulated
events each.

3. Multiplicity averaged hadron spectra

It has been shown in [17, 18, 19, 20, 21, 22] that special event-by-event
fluctuation patterns of the temperature or of the particle multiplicity can
result in power-law tailed average particle spectra even if in each event par-
ticles are distributed according to the Boltzmann–Gibbs distribution. In
papers [23, 24, 25, 26, 27] it was argued that an approximate Koba–Nielsen–
Olesen (KNO) scaling of the multiplicity distribution of charged hadrons
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holds for electron–positron collisions (though the scaling is weakly violated
by the scale evolution of the strong coupling, αs(Q2)). In [13] it is shown
that the average hadron spectrum takes the form

1
σ

dσ

dx
=
∑
N

p(N)NfN (ε) ≈ AxD−1(1− x)D(N0−1)−1(
1− q−1

T/(
√
s/2)

ln(1− x)
)1/(q−1)

, (8)

if, in each event, hadrons are distributed according to the microcanonical
ensemble and the hadron multiplicity fluctuates as

p(N) ∝ (N −N0)α−1e−β (N−N0) . (9)

Remarkably, if particles in each event interact as described in Eq. (6), the
average hadron spectrum would take a form very similar to that of Eq. (8)
in one (D = 1) dimension

1
σ

dσ

dx
≈ A

1 + aEx

(1− y)N0−2[
1− q−1

T/(
√
s/2)

ln(1− y)
]1/(q−1)

, (10)

but in a new variable y = ln(1 + aE x)/ ln(1 + aE).
Fits of Eq. (8) and Eq. (10) to the measured fragmentation functions

published in [28] are shown in Figs. 2 and 3. Parameters used in Eq. (8)
are: D = 3, N0 = 1 + 2/D, qΛ = 1.297 ± 0.002, qp = 1.273 ± 0.0006,
qK0 = 1.301 ± 0.001, TΛ = (0.20 ± 0.01) GeV, Tp = (0.228 ± 0.001)GeV,
TK0 = (0.16± 0.01)GeV.

Fig. 2. Fragmentation functions of Λs, protons andK0s measured at
√
s = 91.2GeV

collision energy (the data are from [28]) with the fitted distributions (black curves:
Eq. (8), grey (red) curves: Eq. (10)).
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Fig. 3. Ratio of fragmentation functions of Λs, protons and K0s measured at√
s = 91.2GeV collision energy (data of graphs are published in [28]) and fitted

distribution Eq. (8) with D = 3 and N0 = 1 + 2/D.

Parameters used in Eq. (10) are: a = 1/E, qΛ = 1.8±0.1, qp = 1.7±0.2,
qK0 = 1.8 ± 0.1, TΛ = (2.9 ± 0.4) GeV, Tp = (4 ± 1)GeV, TK0 = (2.8 ±
0.4)GeV, N0Λ = 3.6± 0.2, N0p = 4.6± 0.5, N0K0 = 3.7± 0.3.
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