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FINITE PRESSURE CORRECTIONS TO
THE PARTON STRUCTURE OF BARYON

INSIDE A NUCLEAR MEDIUM∗
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Our model calculations performed in the frame of the Relativistic Mean
Field (RMF) approach show how important are the modifications of a
baryon Structure Function (SF) and a nucleon mass in Nuclear Matter
(NM) above the saturation point. They originated from the conservation of
a parton longitudinal momenta — essential in the explanation of the EMC
effect at the saturation point of NM. For higher density the finite pressure
corrections emerge from the Hugenholtz–van Hove theorem valid for NM.
Here, we show that the course of Equation of State (EoS) in our mod-
ified Walecka model is very close to the phenomenlogical non-relativistic
expansion of single particle energies in powers of Fermi momentum. The
increasing pressure between nucleons starts to increase nucleon Fermi en-
ergies eF in comparison to average nucleon energies eA, and consequently
the Momentum Sum Rule (MSR) is broken by the factor eF/eA in the
RMF models. To compensate this factor which increases the longitudinal
momentum for nuclear partons, the baryon SF in the nuclear medium and
their masses have to be adjusted. We assume that, independently from
nuclear density, quarks and gluons carry the same amount of a total lon-
gitudinal momenta — the similar assumption is used in the most nuclear
models with parton degrees of freedom.
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1. The nuclear deeply inelastic limit — nuclear equilibrium

In the deep inelastic scattering on nuclei a time-distance resolution can
be connected to the famous Bjorken variable x given by variable z [1, 2]

z = 1/(xMN ) (1)
∗ Presented at the Conference “Strangeness in Quark Matter 2011”, Kraków, Poland,
September 18–24, 2011.
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which measures the propagation time of the hit quark caring the x fraction
of the longitudinal momentum of the nucleon of mass MB. For x > 0.05 the
partonic mean free paths z are shorter then the average distances between
nucleons. This means that for such a short snapshot nucleons can be well
treated as separated objects remaining on the energy shell. In the light cone
formulation [1, 3], xA corresponds to the nuclear fraction of quark longitu-
dinal momentum p+

q = p0
q + p3

q and is equal (in the nuclear rest frame) to
the ratio xA = p+

q /MA with the nuclear mass MA. But the composite nu-
cleus is made of hadrons which are distributed with longitudinal momenta
p+
h , where h = N, π, . . . stands for nucleons, virtual pions etc. In the con-

volution model [1, 3], a fraction of parton longitudinal momenta xA in the
nucleus is given as the product xA = xhyh of the fraction of parton momen-
tum in a hadron xh ≡ Q2/(2Mhν) = p+

q /p
+
h and the fraction of longitudinal

momentum of the hadron in the nucleus yh = p+
h /MA. The nuclear dynam-

ics of given hadrons in the nucleus is described by the distribution function
ρh(y ≡ yh) and SF F h2 (x ≡ xh) describing its parton structure. In the con-
volution model restricted to nucleons and pions (lightest virtual mesons) the
nuclear SF FA2 is described by the formula

FA2 (xA) =
∫
ydy

∫
dxδ(xA − xy)

(
ρN (y)FB

2 (x) + ρπ(y)F π2 (x)
)
, (2)

where F π2 and FB
2 are the parton distributions in the virtual pion and in

the bound nucleon. The nucleon distribution ρA in the basic convolution
formula can be simplified in the RMF to the form [4]

ρA(y) =
4
ρ

∫
|p|>pF

SN (p)d3p

(2π)3

(
1 +

p3

E∗p

)
δ

(
y − p+

εN

)

=
3
4

(
εN
kF

)3
[(

pF

εN

)2

−
(
y − eF

εN

)2
]
. (3)

Here, the nucleon spectral function was taken in the impulse approximation:
SN = n(p)δ(p0 − (E

∗
(p) +UV )) and E∗

(p) =
√
M2
N + p2. eF is the nucleon

Fermi energy and y takes the values given by the inequality (eF− pF)/εN <
y < (eF+pF)/εN . The flux factor (1+ p3

E∗
p
) was recognized [3] as an important

relativistic correction.
The MSR for the nucleonic part is sensitive to the Fermi energy as can

be seen from the integral ∫
dy yρA(y) =

eF
εN

. (4)
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Thus the nucleonic part of MSR gives a factor eF/εN which is equal to 1
at the saturation point [5]. Good description [6] of these deeply inelastic
processes (with 1% admixture of nuclear pions [7]) and without gluon degrees
of freedom allows us to assume that fraction of momentum carried by quarks
does not change from nucleon to nucleus (∼ one half, the rest is carried by
gluons) also above the saturation point of NM. Here, the Fermi energy is no
longer equal to the average binding energy and it will modify ρA in Eq. (4).

2. Non-equilibrium correction to nuclear distribution

For a finite pressure, the well known Hugenholtz–van Hove relation con-
necting eF, εN and pressure p [5] is very important. The Fermi energy is
defined as density derivative of the total nuclear energy E = AεN

eF =
d

d%

(
E

Ω

)
,

eF = εN + %
dεN
d%

= εN + p/% , (5)

where A/% = Ω gives the volume. At the saturation point eF = εA. But for
positive pressure p ∫

dy yρA(y) =
eF
εN

< 1 . (6)

For positive pressure the average distances between nucleons are smaller
and the pion effective cross section is strongly reduced at high nuclear den-
sities above the threshold in N + N = N + N + π reaction calculated in
Dirac–Brueckner approach [8] (also with RPA insertions to self energy of N
and ∆ [9] included). Therefore, for positive pressure, not very far from the
saturation density, the nuclear pions carry less then 1% [7] of the nuclear
longitudinal momentum and dealing with a non-equilibrium correction to
the nuclear distribution (2) we will restrict considerations to the nucleon
part. In our approach, we consider the change of the nucleon mass with the
change of the parton distribution (nucleon SF) above the saturation point.
The increasing pressure between nucleons starts to increase the eF (5) and
consequently the sum rule (4) is broken by the factor eF/εN > 1. To com-
pensate this factor, which increases the longitudinal momentum of nuclear
partons, the nucleon SF in the nuclear medium has to be changed. For
good estimate, in order to proceed without new parameters, assume that
the changes of SF will be included through the changes of Bjorken x in the
medium. Multiplying the argument of the SF by a factor eF/εN the SF
will be squeezed towards smaller x and the total fraction of longitudinal
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momentum will be smaller by a factor εN/eF

1∫
0

FN2

(
eF
εN

xN

)
dxN =

εN
eF

eF
εN∫
0

FN2 (x) dx ∼=
εN
eF

1∫
0

FN2 (x) dx . (7)

Here in the integral we neglect the small contributions from x > 1 region
originated from NN correlations. Now, with the help of Eq. (4) and Eq. (7)
the nuclear MSR

A∫
0

FA2 (x) dx =

1∫
0

FN2 (x) dx (8)

is satisfied if quarks in the nucleus carry the same fraction of longitudinal
momentum as in bare nucleons. On the other hand, the integral (7) corre-
sponds to the total sum of the quark longitudinal momenta p+

q = p0
q + p3

q

inside a nucleon, which is proportional to a total nucleon rest energy or
the nucleon mass. Consequently, the nucleon mass MN will be changed for
% ≥ %0 to the mass Mmed by the gradually decreasing factor εN/eF

Mmed =
εN
eF
MN =

MN

1 + %
εN

dεN
d%

'MN

(
1− p

%εN

)
, (9)

which decreases as the pressure increases. This explicit mass dependence
on the energy εN and energy derivative (9) is plugged into the following
standard Walecka RMF equations [10] for nucleon energy εN and effective
mass M∗

εN = C2
1ρ+

C2
2

ρ
(Mmed −M∗)2 +

γ

(2π)3ρ

∫
d3p
√(

p2 +M∗2
)
,

M∗ = Mmed −
γ

2C2
2 (2π)3

∫
d3p

M∗√(
p2 +M∗2

) , (10)

where γ denotes the level degeneracy (γ = 2 for neutron matter) and the
two coupling constants: vector C2

v and scalar C2
s , were fitted [10] at the

saturation point of nuclear matter (in the formula 2C2
1 = C2

v/M
2
N and 2C2

2 =
M2
N/C

2
s ).

In the Walecka model Mmed = MN . In our model the finite pressure
corrections to Mmed (9) convert the recursive equation (10) to a differential
equation above the saturation density ρ0 in the general form

f

(
εN ,

d

d%
(εN )

)
= 0 for ρ ≥ ρ0 . (11)
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The Equation of State (EOS) for NM has to match the saturation point with
compressibility K−1 = 9%2 d2

d%2
E
A but then the behavior for higher densities

is different for different RMF models. We compare here the stiff Walecka
model [10] with our corrected version [12] and with the model assuming
the non-relativistic expansion in powers of Fermi momentum [13]. These
two models and parametrization in Fermi momentum have two free parame-
ters which are fixed by the empirical binding energy 15.7MeV at saturation
density kF = 1.4 fm. The EoS plots are displayed in Fig. 1.

Fig. 1. The nucleon energy εN −MN as a function of NM density for RMF models;
scalar–vector Walecka (long dashed line above the saturation point), our Modified
Mass approach (solid) with (ρ0 = 0.19 fm−3) [10]. Results for full DBHF [11]
(dotted marked line) calculation using the Bonn A NN interaction are displayed
for comparison. The expansion in Fermi momentum of a single nucleon energy in
NM is also shown (short dashed line).

3. Results and conclusion

We know that NM compressibility in the standard Walecka model is too
large (K−1 ' 560MeV). Our model with the nucleon mass modification
makes the EoS significantly softer, close to the non-relativistic parametriza-
tion which fitted to the binding energy −15.7MeV of NM for kF = 1.4 fm
gives the proper value K−1 = 240MeV. A similar dependence on density ap-
pears for the energy calculated within the DBHF method with the realistic
Bonn A potential [11]. The right value of compressibility is then obtained
due to additional parameters of NN interaction.

Our significant improvement of the simple scalar–vector RMF model
of Walecka without additional parameters concerns the fulfillment of the
parton MSR with the corrected value of nuclear stiffness. It, therefore,
suggests similar modifications of a nucleon mass above the saturation density
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in any RMF model with a constant nucleon mass and unmodified parton
SF. Such a correction is absent in the non-relativistic mean field models
where the flux factor [3] in the nuclear distribution is usually not taken
into account [15] and consequently the factor eF = εN is not present in
Eq. (7). It is related to a different off-shell behavior of effective interactions
in relativistic when compared to non-relativistic mean field approaches. We
note that the stiffness of EoS is very important in the context of studies
compact stars as recently discussed in [16].

Partial support of the Polish Ministry of Science and Higher Education
under the Research Project No. N N202046237 is acknowledged.
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