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The recently formulated model of highly-anisotropic and strongly dis-
sipative hydrodynamics is used in 3+1 dimensions to describe flow char-
acteristics and strangeness production in Au+Au collisions at the highest
RHIC beam energy. Our results show very weak dependence on the initial
momentum anisotropy, provided the anisotropic phase lasts no longer than
1 fm/c.
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1. Introduction

Soft-hadronic data collected in the ultra-relativistic heavy-ion experi-
ments may be well described in the framework of the standard perfect-
fluid hydrodynamics [1] or by dissipative hydrodynamics with small viscos-
ity [2,3,4,5,6,7]. However, the success of those approaches relies strongly on
the assumption that the produced system reaches the state of local thermal
equilibrium within a fraction of a fermi1.

Most of the microscopic models of the early stages fail to explain such
short thermalization times [1]. This difficulty is known as the early ther-
malization puzzle. One of its common solutions is the concept of a strongly
coupled quark-gluon plasma [8]. In addition, many microscopic approaches
assume that the produced system exhibits initially large anisotropies in the
momentum space, for example, see [9].

∗ Presented at the Conference “Strangeness in Quark Matter 2011”, Kraków, Poland,
September 18–24, 2011.

1 We use the natural system of units, where ~ = c = 1.
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Recently, several models have been developed [10,11], which include the
early highly-anisotropic phase of the collisions. This has been achieved intro-
ducing a pre-equilibrium stage connected with a subsequent perfect-fluid de-
scription. Combination of different approaches in a single framework seems,
however, not completely satisfactory. The need for a concise model which
can describe different stages of heavy-ion collisions in the uniform way trig-
gered our development of the highly-Anisotropic and strongly-Dissipative
HYDROdynamics (ADHYDRO) [12,13,14,15], see also [16,17].

In this paper, we present our results obtained within the ADHYDRO
framework coupled to THERMINATOR [18, 19]. For the first time we use
ADHYDRO in 3+1 dimensions. We discuss flow characteristics of the emit-
ted hadrons and strangeness production depending on the initial momentum
anisotropy.

2. Formulation of the model

In the ADHYDRO model the evolution of the system is described by the
following equations [12]

∂µT
µν = 0 , (1)

∂µσ
µ = Σ , (2)

which express the energy-momentum conservation and the entropy produc-
tion laws, respectively. The energy-momentum tensor Tµν in Eq. (1) has
the form

Tµν = (ε+ P⊥)UµUν − P⊥ gµν − (P⊥ − P‖)V µV ν , (3)

which allows for the asymmetry between the longitudinal, P‖, and trans-
verse, P⊥, pressures. In the limit, where the system becomes isotropic,
P‖ = P⊥ = P , the formula (3) reproduces the energy-momentum tensor
of the perfect fluid. Similarly, the entropy production law (2) is reduced
to the entropy conservation law, if we assume that the entropy source, Σ,
vanishes. The four-vector Uµ defines the four-velocity of the fluid and V µ is
the four-vector defining the beam axis. In the general case, Uµ and V µ may
be parametrized in the following way

Uµ = (u0 coshϑ, ux, uy, u0 sinhϑ) , (4)
V µ = (sinhϑ, 0, 0, coshϑ) , (5)

where ux and uy are the transverse components of the four-velocity field

(u⊥ =
√
u2
x + u2

y and u0 =
√

1 + u2
⊥), ϑ is the longitudinal fluid rapidity.

The parameterizations (4) and (5) satisfy simple normalization conditions,
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i.e., U2 = 1, V 2 = −1, U V = 0. The entropy flux σµ in (2) is defined by
the formula

σµ = σ Uµ , (6)

where σ is the non-equilibrium entropy density.
One can show [12] that instead of P‖ and P⊥ it is more convenient to

use the entropy density σ and the anisotropy parameter x as two indepen-
dent variables (to a good approximation we have P‖/P⊥ = x−3/4). Simi-
larly to standard hydrodynamics with vanishing baryon chemical potential,
the energy density ε introduced in Eq. (3), the entropy density σ, and the
anisotropy parameter x are related through the generalized equation of state
ε = ε(σ, x). In our model we use the following ansatz [13]

ε(x, σ) = εqgp(σ)r(x) , (7)
P⊥(x, σ) = Pqgp(σ)

[
r(x) + 3xr′(x)

]
,

P‖(x, σ) = Pqgp(σ)
[
r(x)− 6xr′(x)

]
,

where εqgp and Pqgp define the realistic equation of state constructed in
Ref. [20]. The function r(x) is the pressure relaxation function characterizing
the properties of the fluid which exhibits the anisotropy x. Here we use the
form introduced in [12]

r(x) =
x−

1
3

2

[
1 +

x arctan
√
x− 1√

x− 1

]
. (8)

In the isotropic case x = 1, r(1) = 1, r′(1) = 0, and Eq. (7) is reduced to
the equation of state used in [20].

The function Σ which appears on the right-hand side of Eq. (2) defines
the entropy production due to microscopic processes taking place in the
system. Exactly these processes lead to thermalization of the system. We
use the form proposed in [12]

Σ(σ, x) =
(1−

√
x)2√
x

σ

τeq
, (9)

where the time-scale parameter τeq = 0.25 fm controls the rate of equili-
bration2. In the limit of small anisotropy, Eq. (9) is consistent with the
quadratic form of the entropy production in the Israel–Stewart theory. Far
from equilibrium, hints for the form of Σ are lacking, although we may ex-
pect some suggestions from the AdS/CFT correspondence [21]. Thus, for
large anisotropies the formula (9) should be treated as an assumption defin-
ing the dynamics of the system.

2 Using this value we find that the system equilibrates within about 1 fm.
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3. Initial conditions and freeze-out

In the general 3+1 case we have to solve Eqs. (1) and (2) for five un-
known functions σ, x, ux, uy, and ϑ, which depend on the space-time coor-
dinates: τ,x⊥, and η (τ is the proper time and η is the space-time rapid-
ity). Since the system’s evolution is treated hydrodynamically from the very
early stages, where the anisotropies are expected to be very large, we fix the
initial starting time for ADHYDRO to τ0 = 0.25 fm. Similarly to other hy-
drodynamic calculations, we assume that there is no initial transverse flow,
ux(τ0,x⊥, η) = uy(τ0,x⊥, η) = 0. For the initial longitudinal rapidity of
the fluid we assume the Bjorken scaling ϑ(τ0,x⊥, η) = η. We check three
scenarios: (i) the initial source is strongly oblate in the momentum space,
x(τ0,x⊥, η) = 100, which corresponds to a transversally thermalized source,
(ii) the source is prolate in momentum space, x(τ0,x⊥, η) = 0.032 (this case
is analogous to (i) because r(100) = r(0.032)), and (iii) the initial source is
isotropic, x(τ0,x⊥, η) = 1, which gives the closest description to the stan-
dard hydrodynamic case. The initial entropy density profile is given by the
formula

σ(τ0,x⊥, η) = ε−1
gqp

[
εi ρ̃(b,x⊥, η)
r(x(τ0,x⊥, η))

]
, ρ̃(b,x⊥, η) =

ρ(b,x⊥, η)
ρ(0, 0, 0)

, (10)

where ρ̃ is the normalized initial density of sources. The density profile ρ is
given as the tilted source worked out in Ref. [22] and ε−1

gqp is the inverse of
the function εgqp(σ). The initial energy density εi = 107.5GeV/fm3 is the
same for all three analyzed cases.

The evolution is determined by the hydrodynamic equations until the
entropy density drops to σf = 1.79 fm−3, which for x = 1 corresponds to
the temperature Tf = 150MeV. According to the single-freeze-out scenario,
at this moment the abundances and momenta of particles are expected to
freeze-out and particles freely stream to detectors. The processes of par-
ticle production and decays of unstable resonances are described by using
THERMINATOR 2 [19], which applies the Cooper–Frye formalism to generate
hadrons on the freeze-out hypersurface extracted from ADHYDRO.

4. Results and conclusions

The THERMINATOR 2 package [19] allows us the calculation of several
one- and two-particle observables (such as the particle pT spectra, the di-
rected and elliptic flow coefficients, the HBT radii, etc.). Due to limited
space, in this paper we show only the hyperon spectra and the directed flow
coefficient v1. More results will be presented and discussed in a separate
publication.
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The scaling (10) helps us to keep the final particle multiplicities approx-
imately the same in the three considered cases. In particular, this can be
concluded from the left-hand side of Fig. 1, where we show the transverse mo-
mentum spectra of hyperons. We observe that the stronger transverse flow
in the case (i) results in a bit harder spectra as compared to the case (ii).
Despite this fact, the spectra do not differ significantly. We observe that the
model spectra of Ξs and Ωs agree well with the data, while the normalization
of Λs is too small.
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Fig. 1. Transverse-momentum spectra of hyperons (left part) compared to the ex-
perimental data from STAR [23] and directed flow coefficient (right part) compared
to the STAR data [24]. Theoretical lines are obtained from ADHYDRO for Au+Au
collisions at

√
sNN = 200GeV and the centrality class c = 0–5%. The results are

shown for three cases: oblate source (blue dashed line), prolate source (red dash-
dotted line) and perfect fluid (green dotted line) as discussed in Sec. 3.

The authors of Ref. [25] have shown that the v1 coefficient may be treated
as a probe for measuring the thermalization time, since it is very sensitive to
the early difference of pressures. On the right-hand side of Fig. 1 we present
our results for the directed flow coefficient v1. We observe small sensitivity
to large initial anisotropy in the midrapidity region provided the anisotropic
stage lasts not longer than 1 fm. Our results are not so much restrictive as
the results presented in [25], since we do not fix the final multiplicities but
allow them to vary within the experimental errors.

More results obtained in the ADHYDRO model in 3 + 1 dimensions
will be presented in a separate publication. We note that our previous
results obtained in the 2 + 1 version [15] (a boost-invariant version) show
similar, weak dependence of other physical observables on the initial pressure
asymmetry. In conclusion, we state that we have found further evidence that
there is a place for a highly-anisotropic phase at the early stages of heavy-
ion collisions, provided the system reaches local thermal equilibrium before
1 fm.
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