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1. Introduction

We construct a combined effective model reproducing the equation of
state of hadronic matter as obtained in recent lattice QCD simulations [1,2].
The model should reproduce basic physical characteristics of processes en-
countered in the dense hadronic matter, from the hot QCD phase through
the critical temperature region till the lower temperature hadron resonance
gas phase. It has been shown in [3] that the equation of state derived from
that time QCD lattice calculation [4] can be reproduced by a simple hadron
gas resonance model below critical temperature Tc. For higher temperatures
the model is modified by introducing finite widths of heavy hadrons [5] with
a heuristic ansatz for the spectral function which reflects medium modifi-
cations of hadrons. This Mott–Hagedorn type model is constructed to fit
nicely the lattice data, also above Tc where it does so because it leaves light
hadrons below a mass threshold of m0 = 1GeV unaffected. The description
of the lattice data at high temperatures is accidental because the effective
number of those degrees of freedom approximately coincides with that of
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quarks and gluons. In order to remove this unphysical aspect of the other-
wise appealing model, one has to extend the spectral broadening also to the
light hadrons and thus describe their disappearance due to the Mott effect
while simultaneously the quark and gluon degrees of freedom appear at high
temperatures due to chiral symmetry restoration and deconfinement. In the
present contribution, we will report first results obtained by introducing a
unified treatment of all hadronic resonances with a state-dependent width
Γi(T ) in accordance with the inverse hadronic collision time scale from a
recent model for chemical freeze-out in a resonance gas [6]. The appearance
of quark and gluon degrees of freedom is introduced by the Polyakov-loop
improved Nambu–Jona-Lasinio (PNJL) model [7, 8]. The model is further
refined by adding perturbative corrections to O(αs) for the high-momentum
region above the three-momentum cutoff inherent in the PNJL model. One
obtains eventually a good agreement with lattice QCD data, comparable
with all important physical characteristics taken into account.

2. Extended Mott–Hagedorn resonance gas

We introduce the width Γ of a resonance in the statistical model through
the spectral function

A(M,m) = Nm
Γ m

(M2 −m2)2 + Γ 2m2
, (1)

where Nm is the standard normalization factor. The model ansatz for the
resonance width Γ is given by [5]

Γ (T ) = CΓ
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where CΓ = 10−4, Nm = 2.5, NT = 6.5 and TH = 165MeV. For simplicity,
we assume nS = 0 for the strangeness number density and nB = 0 for the
baryon number density. Then the respective chemical potentials µB = 0
and µS = 0 always, so that the temperature is the only significant statistical
parameter here.

The energy density of this model can then be cast in the form
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∑
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wherem0 = 1GeV and the energy density per degree of freedom with a mass
M is
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∫
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with the degeneracy gi. For mesons, δi = −1 and for baryons δi = 1. For
our hadronic gas kept at fixed volume we have the relation

ε = T s− P = T
∂P

∂T
− P , (5)

where P = P (T ) and s = s(T ) are the pressure and entropy density.
In the left panel of Fig. 1, the results for the pressure and energy density

of the model at this stage are shown. Although providing us with an excellent
fit of the lattice data, the high-temperature phase of this model is unphysi-
cal. Imposing that all mesons lighter thanm0 = 1GeV are stable provides us
with a SB limit at high temperatures which mimics that due to quarks and
gluons in the case for three flavors [9]. In reality, due to the chiral phase tran-
sition at Tc, the quarks loose their mass and, therefore, the threshold of the
continuum of quark–antiquark scattering states is lowered. The light meson
masses, however, remain almost unaffected by the increase in the tempera-
ture of the system. Consequently, they merge the continuum and become
unbound — their spectral function changes from a delta-function (on-shell
bound states) to a Breit–Wigner-type (off-shell, resonant scattering states).
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Fig. 1. Left: Thermodynamic quantities for the old Mott–Hagedorn Resonance
Gas model [5]. Different line styles correspond to different values for the parameter
Nm in the range from Nm = 2.5 (dashed line) to Nm = 3.0 (solid line). Lat-
tice QCD data are from Ref. [1]. Right: Thermodynamic quantities for the new
Mott–Hagedorn Resonance Gas, where quark-gluon plasma contributions are de-
scribed within the PNJL model including αs corrections (dashed lines). Hadronic
resonances are described within the resonance gas with finite width, as an imple-
mentation of the Mott effect (dash-dotted line). The sum of both contributions
(solid lines) is shown for the energy density (thick lines) and pressure (thin lines)
in comparison with the lattice data from [1].
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This phenomenon is the hadronic analogue [10] of the Mott–Anderson tran-
sition for electrons in solid state physics (insulator-conductor transition). It
has been first introduced for the hadronic-to-quark-matter transition in [11].
Later, within the NJL model, a microscopic approach to the thermodynam-
ics of the Mott dissociation of mesons in quark matter has been given in the
form of a generalized Beth–Uhlenbeck equation of state [12], see also [13].

As a microscopic treatment of the Mott effect for all resonances is pres-
ently out of reach, we introduce an ansatz for a state-dependent hadron
resonance width Γi(T ) given by the inverse collision time scale recently sug-
gested within an approach to the chemical freeze-out and chiral condensate
in a resonance gas [6]

Γi(T ) = τ−1
coll,i(T ) =

∑
j

λ
〈
r2i
〉
T

〈
r2j
〉
T
nj(T ) , (6)

which is based on a binary collision approximation and relaxation time
ansatz using for the in-medium hadron–hadron cross sections the geometri-
cal Povh–Hüfner law [14]. In Eq. (6) the coefficient λ is a free parameter,
nj(T ) is the partial density of the hadron j and the mean squared radii
of hadrons 〈r2i 〉T obtain in the medium a temperature dependence which is
governed by the (partial) restoration of chiral symmetry. For the pion this
was quantitatively studied within the NJL model [15] and it was shown that
close to the Mott transition the pion radius is well approximated by

r2π(T ) =
3

4π2
f−2
π (T ) =

3M2
π

4π2mq
|〈q̄q〉T |−1 . (7)

Here the Gell-Mann–Oakes–Renner relation has been used and the pion mass
shall be assumed chirally protected and thus temperature independent.

For the nucleon, we shall assume the radius to consist of two compo-
nents, a medium independent hard core radius r0 and a pion cloud contri-
bution r2N (T ) = r20 + r2π(T ), where from the vacuum values rπ = 0.59 fm
and rN = 0.74 fm one gets r0 = 0.45 fm. A key point of our approach is
that the temperature dependent hadronic radii shall diverge when hadron
dissociation (Mott effect) sets in, driven basically by the restoration of chiral
symmetry. As a consequence, in the vicinity of the chiral restoration tem-
perature all meson radii shall behave like that of the pion and all baryon
radii like that of the nucleon. The resulting energy density and pressure
behavior is shown in the right panel of Fig. 1. This part of the model we
call Mott–Hagedorn-Resonance-Gas (MHRG). When all hadrons are gone
at T ∼ 250MeV, we are clearly missing degrees of freedom!
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3. Quarks, gluons and hadron resonances

We improve the PNJL model over its standard versions [7, 8] by adding
perturbative corrections in O(αs) for the high-momentum region above the
three-momentum cutoff Λ. In the second step, the MHRG part is replaced by
its final form, using the state-dependent spectral function for the description
of the Mott dissociation of all hadron resonances above the chiral transition.
The total pressure obtains the form

P (T ) = PMHRG(T ) + PPNJL,MF(T ) + P2(T ) , (8)

where PMHRG(T ) stands for the pressure of the MHRG model, accounting
for the dissociation of hadrons in hot dense, matter.

The O(αs) corrections can be split in quark and gluon contributions

P2(T ) = P quark
2 (T ) + P gluon

2 (T ) , (9)

where P quark
2 stands for the quark contribution and P gluon

2 contains the ghost
and gluon contributions. The total perturbative QCD correction to O(αs)
is

P2 = − 8
π
αsT

4

(
I+
Λ +

3
π2

((
I+
Λ

)2 +
(
I−Λ
)2))

, (10)

where I±Λ =
∫∞
Λ/T

dx x
ex±1 . The corresponding contribution to the energy den-

sity is given in standard way by Eq. (5).
We will now include an effective description of the dissociation of hadrons

due to the Mott effect into the hadron resonance gas model by including the
state dependent hadron resonance width (6) into the definition of the HRG
pressure

PMHRG(T ) =
∑
i

δidi

∫
d3p

(2π)3
dM Ai(M)T ln

(
1 + δie

−
√
p2+M2/T

)
. (11)

From the pressure as a thermodynamic potential all relevant thermodynami-
cal functions can be obtained. Combining the αs corrected mean field PNJL
model for the quark–gluon subsystem with the MHRG description of the
hadronic resonances we obtain the results shown in the right panel of Fig. 1,
where the resulting partial contributions in comparison with lattice QCD
data from Ref. [1] are shown.

We see that the lattice QCD thermodynamics is in full accordance with a
hadron resonance gas up to a temperature of ∼ 170MeV which corresponds
to the pseudocritical temperature of the chiral phase transition. The lattice
data saturate below the Stefan–Boltzmann limit of an ideal quark-gluon
gas at high temperatures. The PNJL model, however, attains this limit by
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construction. The deviation is to good accuracy described by perturbative
corrections to O(αs) which vanish at low temperatures due to an infrared
cutoff procedure. The transition region 170 ≤ T [MeV] ≤ 250 is described by
the MHRG model, resulting in a decreasing HRG pressure which vanishes
at T ∼ 250MeV.

We present two stages of an effective model description of QCD thermo-
dynamics at finite temperatures which properly accounts for the fact that
in the QCD transition region it is dominated by a tower of hadronic res-
onances. To this end we further develop a generalization of the Hagedorn
resonance gas thermodynamics which includes the finite lifetime of hadronic
resonances in a hot and dense medium by a model ansatz for a temperature
— and mass dependent spectral function.
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