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We study nonequilibrium effects at the QCD phase transition within
the framework of Polyakov loop extended chiral fluid dynamics. The quark
degrees of freedom act as a locally equilibrated heat bath for the sigma
field and a dynamical Polyakov loop. Their evolution is described by a
Langevin equation with dissipation and noise. At a critical point we ob-
serve the formation of long-range correlations after equilibration. During
a hydrodynamical expansion nonequilibrium fluctuations are enhanced at
the first order phase transition compared to the critical point.
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1. Introduction

Presently the knowledge of the QCD phase diagram is still limited. While
lattice QCD calculations tell us that at vanishing baryochemical potential
there is a crossover [1], only model studies allow to explore the high baryon
density regions. There one expects a first order transition at large µ ending
at a critical point (CP) [2]. The CP is expected to be detected in heavy-ion
collisions through event-by-event fluctuations of quantities like transverse
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momentum or particle multiplicity [3,4]. Nevertheless, phenomena like crit-
ical slowing down as well as the finite system lifetime and size prevent the
correlation length from diverging [5] which thus weakens these signals. It is
therefore important to include nonequilibrium effects and the dynamics of
the system to estimate the experimental signatures of the critical end point.
A promising ansatz to study the QCD phase transition in such a setting is
provided by the framework of chiral fluid dynamics [6, 7, 8]. Here, the basic
idea is to propagate the order parameter of chiral symmetry explicitly by
a Langevin equation, while the heat bath is given by a fluid dynamically
expanding medium made out of quarks. Presently, we extend this model
with the Polyakov loop to consider both the chiral and the deconfinement
transition. Here, the Polyakov loop is treated as an effective field which is
propagated by a phenomenological Langevin equation. We present results
of temperature quenches in a box and study the evolution of fluctuations
during the expansion of a hot plasma droplet.

2. Chiral fluid dynamics with a Polyakov loop

For investigation we use the Polyakov loop extended quark meson
model [9] with the Lagrangian

L = q
[
i
(
γµ∂µ − igQCDγ

0A0

)− gσ] q + 1
2 (∂µσ)2 − U (σ)− U (`, ¯̀) , (1)

where q = (u, d) is the constituent quark field, A0 the temporal component
of the color gauge field and σ the mesonic field. The pion degrees of freedom
are neglected in the present study. The potential for the sigma field reads

U (σ) =
λ2

4
(
σ2 − ν2

)2 − hqσ − U0 . (2)

The temperature dependent Polyakov loop potential is chosen in a polyno-
mial form following [9, 10]

U
T 4

(
`, ¯̀) = −b2(T )

4

(
|`|2 +

∣∣¯̀∣∣2)− b3
6
(
`3 + ¯̀3

)
+
b4
16

(
|`|2 +

∣∣¯̀∣∣2)2
. (3)

Integrating out the quark degrees of freedom, which will constitute the heat
bath, we obtain the grand canonical potential. At µB = 0, ` = ¯̀ and in the
mean-field approximation it is [9]

Ωq̄q = −4NfT

∫
d3p

(2π)3
ln
[
1 + 3`e−βE + 3`e−2βE + e−3βE

]
. (4)

For different coupling strengths g the effective potential Veff = U + U +Ωq̄q
shows different characteristic shapes at the transition temperature: for
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g = 4.7 one obtains two degenerate minima, see Fig. 1 (left), while for
g = 3.52 the potential is very broad and flat at the minimum, Fig. 1 (right).
This resembles the situation at a critical point. These choices of the quark–
meson coupling allow a first qualitative study of effects at several types of
transition1.
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Fig. 1. Left: Effective potential at g = 4.7, corresponding to a first order phase
transition at Tc = 172.9 MeV. Right: Effective potential at g = 3.52, corresponding
to a critical point and Tc = 180.5 MeV.

In [8] the coupled dynamics for the sigma field and the quark fluid were
derived self-consistently. The sigma field is propagated by a Langevin equa-
tion

∂µ∂
µσ + ησ∂tσ +

∂Veff

∂σ
= ξσ . (5)

The explicit form of the temperature dependent damping coefficient ησ
together with the correlator for the stochastic noise field have been derived
in [8].

We allow for a dynamical evolution of the Polyakov loop by adding a
kinetic term in the equation of motion [11]. For the full nonequilibrium
description we also need to add a damping term η` ∼ 1/fm [12] and impose
the dissipation-fluctuation relation

2Nc

g2
QCD

∂µ∂
µ`T 2 + η`∂t`+

∂Veff

∂`
= ξ` , (6)

〈
ξ`(t)ξ`

(
t′
)〉

=
1
V
δ
(
t− t′) 2η`T . (7)

Note at this point that the Polyakov loop is originally defined only in equi-
librium and it is not a priori clear what the correct dynamics are [10]. This
approach is, therefore, purely phenomenological.

1 Note that in principle one has to choose g such that gσ reproduces the constituent
quark mass in vacuum. This would give a value of g ∼ 3.2.
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The quark fluid is propagated via the equations of ideal relativistic fluid
dynamic using the energy-momentum tensors of the liquid, the σ-field and
the Polyakov-loop

∂µ
(
Tµνq + Tµνσ + Tµν`

)
= 0 . (8)

3. Numerical results

3.1. Temperature quench in a box

We put fields and fluid in a box with periodic boundary conditions.
The fields are initialized at a temperature above Tc. Then the temperature
is quenched to a value below the transition point when the quark bath is
added. The fields lose energy through damping, transferring this amount of
energy to the fluid via equation (8) which leads to a subsequent increase of
the temperature, see also [13]. We find quench temperatures such that the
system relaxes near the transition temperature. In the Polyakov loop, we
can observe an interesting phenomenon. Figure 2 shows the value of ` in
x-direction y = z = 0 evolving in time for both transition scenarios during
the relaxation process. At the critical point, one observes the formation of
long-range fluctuations over both space and time, an effect that does not
occur at the first order transition.
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Fig. 2. Left: Fluctuations at the first order transition during relaxation process,
quench from T = 180 MeV to T = 140 MeV. Right: Long-range fluctuations
at the critical point or during relaxation process, quench from T = 186 MeV to
T = 166 MeV.

3.2. Fluid dynamic expansion

For this simulation we initialize an ellipsoidal region with a tempera-
ture of T = 200 MeV, smoothed by a Woods–Saxon function at the edges.
Initially, the fields and fluid are set to their equilibrium values throughout
the lattice. We let the system expand by full 3 + 1 dimensional fluid dy-
namics and measure the average temperature in a fixed central volume as
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a function of time. The result is shown in Fig. 3. While for the critical
point T decreases monotonically with time, we can observe a reheating at
the first order transition as a consequence of the forming of a supercooled
phase below the transition temperature that finally decays to the global
minimum and transfers its energy into the fluid. In Fig. 4, we show the
evolution of nonequilibrium fluctuations for σ and `. These are defined as

〈∆σ〉 =
√
〈(σ − σeq)2〉 and 〈∆`〉 =

√
〈(`− `eq)2〉, respectively. For both

order parameters we find a large increase of the nonequilibrium fluctuations
in a scenario with a first order transition compared to the scenario with a
critical point. This is again caused by the large deviations from equilibrium
that occur during supercooling. We see in both figures a second smaller in-
crease, this arises when parts of the system cross the transition temperature
a second time after the reheating.

130

140

150

160

170

180

190

200

0 2 4 6 8 10 12

T
/M

eV

t/fm

critical point
first order phase transition

Fig. 3. Temperature of the quark fluid, for the first order scenario reheating after
formation of a supercooled phase is observed.
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Fig. 4. Left: Sigma fluctuations at the first order transition compared to the critical
point. Right: Polyakov loop fluctuations at the first order transition compared to
the critical point.
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4. Conclusions

We presented a dynamical model to study the chiral and deconfinement
phase transition of QCD. The nonequilibrium evolution of both order param-
eters and their interaction with the quark fluid was described by Langevin
equations. At the critical point, we observed the formation of long-range
fluctuations. During the hydrodynamical expansion of a finite size system
our model shows nonequilibrium effects like supercooling and reheating of
the quark heat bath at the first order phase transition. There we also found
an enhancement of nonequilibrium fluctuations in a first order phase tran-
sition scenario compared to an evolution through the critical point.

This work was supported by the Hessian LOEWE initiative Helmholtz
International Center for FAIR.
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