J/ψ POLARIZATION IN p + p COLLISIONS AT $\sqrt{s} = 200$ GeV IN STAR*

BARBARA TRZECIAK

for the STAR Collaboration

Faculty of Physics, Warsaw University of Technology Koszykowa 75, 00-662 Warszawa, Poland

(Received December 6, 2011)

In this paper, J/ψ polarization at mid-rapidity in p + p collisions at $\sqrt{s} = 200$ GeV measured in the STAR experiment at RHIC is reported. J/ψ production is analyzed via the dielectron decay channel. J/ψ polarization is extracted from the decay angular distribution in the helicity frame. The J/ψ polarization is measured at transverse momentum range (2–6) GeV/c and is found to be consistent with NLO⁺ Color Singlet Model (NLO⁺ CSM), Color Octet Model (COM) predictions and with no polarization within current uncertainties.

DOI:10.5506/APhysPolBSupp.5.549 PACS numbers: 13.88.+e, 13.20.Gd, 14.40.Lb

1. Introduction

A number of models with different J/ψ production mechanisms are able to describe the measured J/ψ production cross section reasonably well. It suggests that other observables are needed to discriminate between different J/ψ production models. J/ψ spin alignment, commonly named as J/ψ polarization, can be used as such an observable since various models have different $p_{\rm T}$ dependent predictions on the J/ψ polarization.

The Color Evaporation Model (CEM) describes J/ψ cross sections measured in many experiments reasonably well but has no prediction power regarding the J/ψ polarization. The NLO⁺ Color Singlet Model (CSM) [1] predicts longitudinal J/ψ polarization in the helicity frame at low and mid $p_{\rm T}$ at mid-rapidity. These recent calculations of the CSM for the yield differential in $p_{\rm T}$ show better agreement with RHIC data at low and mid $p_{\rm T}$ than earlier CSM calculations and the result for J/ψ polarization is in good agreement with the PHENIX data. Non-relativistic quantum chromodynamics (NRQCD) effective theory, also known as Color Octet Model (COM)

^{*} Presented at the Conference "Strangeness in Quark Matter 2011", Kraków, Poland, September 18–24, 2011.

predicts transverse polarization at high $J/\psi p_{\rm T}$, $p_{\rm T} > 5 \text{ GeV}/c$ which is in disagreement with the polarization measurement from the CDF experiment at FermiLab [2]. On the other hand, a tuned NRQCD predicts longitudinal J/ψ polarization at $1.5 < p_{\rm T} < 5 \text{ GeV}/c$ at mid-rapidity and is able to qualitatively describe the PHENIX J/ψ polarization measurements as well as the cross section measurements [3].

The measurement of J/ψ polarization at $p_{\rm T} > 5$ GeV/c is expected to have discrimination power against different models of J/ψ production since, *e.g.*, NLO⁺ CSM and COM predict different polarization in that $J/\psi p_{\rm T}$ region.

1.1. Decay angular distribution

In this study, J/ψ polarization is analyzed via the angular distribution of the electron decay from charmonium in the helicity frame [4]. The angular distribution is derived from the density matrix elements of the production amplitude using parity conservation rules. Polar angle θ is the angle between the positron momentum vector in the J/ψ rest frame and J/ψ momentum vector in the laboratory frame.

The angular distribution integrated over the azimuthal angle is parametrized

$$\frac{dN}{d\cos\theta} \propto 1 + \lambda\cos^2\theta\,,\tag{1}$$

where λ is the polarization parameter that contains both the longitudinal and transverse components of the J/ψ cross section. When $\lambda = 0$ there is no polarization, $\lambda = -1$ means full longitudinal polarization and $\lambda = 1$ corresponds to full transverse polarization.

2. Data analysis

In this analysis, data recorded in 200 GeV p + p collisions in the STAR experiment in year 2009 is used. The analyzed data was sampled from an integrated luminosity of ~ 1.5 pb⁻¹ and was triggered by the STAR Barrel Electromagnetic Calorimeter (BEMC). The trigger required transverse energy deposited in a single BEMC tower ($\Delta \eta \times \Delta \phi = 0.05 \times 0.05$) to be within 2.6 < $E_{\rm T} \leq 4.3$ GeV.

 J/ψ is reconstructed via its dielectron decay channel $J/\psi \rightarrow e^+e^-$ with branching ratio BR = 5.9%, and is required that at least one of electrons from J/ψ decay satisfies the trigger conditions. The Time Projection Chamber (TPC), Time-of-Flight (TOF) and BEMC detectors are used to reconstruct and identify electrons. The TPC provides information about dE/dx. Information from the TOF is very useful for electron identification and hadron rejection at lower momenta, where electron and hadron dE/dxbands overlap, $|1/\beta - 1| < 0.03$ ($\beta = v/c$) cut was applied at p < 1.4 GeV/c. In 2009, 72% of the TOF detector was installed. At higher momenta the BEMC can reject hadrons very efficiently. For momenta above 1.4 GeV/c a cut of E/p > 0.5 was used, where E is energy deposited in a single BEMC tower (for electrons E/p ratio is expected to be ≈ 1).

2.1. J/ψ signal

The cuts mentioned above allowed us to obtain a very clear J/ψ signal with a signal to background ratio of 15 and very high significance of 26σ . Fig. 1 (a) shows the invariant mass distribution of all combinations of $e^+e^$ pairs in black (closed circles) and combinatorial background in grey/red (open circles). The combinatorial background is calculated using like-sign technique, from a sum of e^+e^+ and e^-e^- pairs. The J/ψ signal is obtained by subtracting the (red) histogram (background) from the black histogram (signal + background), see Fig. 1 (b). The number of J/ψ s calculated by counting bin entries in the invariant mass range (2.9–3.3) GeV/ c^2 is 772±29 in the $J/\psi p_{\rm T}$ range (2–6) GeV/c and |y| < 1. The same mass window is used for the polarization analysis for which the signal is split into 3 statistically comparable $p_{\rm T}$ bins.

Fig. 1. Invariant mass distributions in J/ψ mass window (2.9–3.3) GeV/ c^2 , J/ψ $p_{\rm T}$ range (2–6) GeV/c and |y| < 1. (a) shows signal + background in black (full circles) and like-sign background in grey/red (open circles). (b) shows J/ψ signal after the combinatorial background subtraction.

3. J/ψ polarization

The uncorrected $\cos \theta$ distribution is obtained using the same electron identification cuts as J/ψ signal, in the $J/\psi p_{\rm T}$ range of (2–6) GeV/c and |y| < 1. The $\cos \theta$ distribution is divided into $3J/\psi p_{\rm T}$ bins: $2 < p_{\rm T} <$ 3 GeV/c, $3 < p_{\rm T} < 4 \text{ GeV}/c$ and $4 < p_{\rm T} < 6 \text{ GeV}/c$. The $\cos \theta$ distributions for the $3p_{\rm T}$ bins, with combinatorial background subtracted are presented in Fig. 2 (a), 2 (c), 2 (e) respectively.

Fig. 2. Left plots — uncorrected $\cos \theta$ distribution with combinatorial background subtracted. Right plots — $\cos \theta$ efficiency.

3.1. Corrections

In order to get the $\cos \theta$ corrections, unpolarized Monte Carlo J/ψ s with uniform $p_{\rm T}$ and rapidity distributions are embedded into real events and the detector response is simulated. All cuts used in the analysis were applied and the $\cos \theta$ efficiency as a function of J/ψ transverse momentum was obtained. $\cos \theta$ distributions were also re-weighted according to the real $J/\psi p_{\rm T}$ and y shapes. Obtained in that way, corrections were applied to uncorrected $\cos \theta$ distributions from data in 1 GeV/c wide $J/\psi p_{\rm T}$ bins. Corrections include acceptance correction, tracking efficiency, electron identification efficiency and trigger efficiency. The total J/ψ efficiency is shown versus J/ψ transverse momentum in Fig. 2 (b), 2 (d), 2 (f). The most critical factor is trigger efficiency. At least one of electrons from J/ψ decay must have $p_{\rm T}$ above 2.6 GeV/c since it is required to satisfy the trigger conditions. It causes significant loss in number of observed J/ψ at lower $J/\psi p_{\rm T}$ and the efficiency decrease with decreasing $|\cos \theta|$. It is well visible in Fig. 2 (b), where we lose all entries at $\cos \theta \sim 0$. With increasing $J/\psi p_{\rm T}$ the trigger efficiency increase but because the trigger has also the upper threshold ($E_{\rm T} \leq 4.3$ GeV) and due to the acceptance effect (single electron $p_{\rm T} > 0.4$ GeV/c and $|\eta| < 1$) we see drop of total efficiency at $|\cos \theta| \sim 1$, see Fig. 2 (f).

3.2. J/ψ polarization result

The corrected $\cos \theta$ distributions are fitted with: $\operatorname{norm}(1 + \lambda \cos^2 \theta)$ (see Eq. 1) with no constraints on the fit parameters, see Fig. 3 (a), 3 (b), 3 (c), where 'norm' is a normalization factor, λ is the polarization parameter. Lines represent the most likely fits. Obtained results of the polarization parameter are: $\lambda = 0.46 \pm 0.40(\operatorname{stat.}) \pm 0.34(\operatorname{sys.}), \lambda = -0.32 \pm 0.20(\operatorname{stat.})\pm 0.16(\operatorname{sys.}), \lambda = -0.17\pm 0.29(\operatorname{stat.})\pm 0.11(\operatorname{sys.})$ for $J/\psi p_{\mathrm{T}}$ ranges:

Fig. 3. Corrected $\cos \theta$ distributions with the fit: $\operatorname{norm}(1 + \lambda \cos^2 \theta)$, errors are statistical.

(2–3) GeV/c, (3–4) GeV/c, (4–6) GeV/c, respectively. Dominant sources of systematic uncertainties are: $\cos \theta$ binning and acceptance, J/ψ mass range, electron identification cut, trigger efficiency. Detailed work on systematic error estimation is in progress.

Polarization parameters as a function of $J/\psi p_{\rm T}$ are shown in Fig. 4. The STAR result (red star symbols) is compared with NLO⁺ CSM [1] (light grey/blue shaded area) and COM [3] (dark gray hatched area) model predictions and with the PHENIX result for J/ψ polarization at mid-rapidity (black symbols) [5]. The STAR result is consistent with the COM and CSM predictions within current experimental and theoretical uncertainties. The measurement is also consistent with the PHENIX data and extends the $p_{\rm T}$ reach to ~ 6 GeV/c.

Fig. 4. STAR polarization parameter λ versus $J/\psi p_{\rm T}$ (red star symbols) compared with PHENIX result (black symbols) [5], NLO⁺ CSM (light grey/blue shaded area) [1] and COM [3] (dark gray hatched area) predictions.

4. Summary

In this report, the J/ψ polarization measurement from the STAR experiment at mid-rapidity is presented. The polarization parameter λ is extracted in the helicity frame in 3 J/ψ $p_{\rm T}$ bins. Within current uncertainties the obtained transverse momentum dependent λ parameter is consistent with NLO⁺ CSM and COM model predictions, and with no polarization.

REFERENCES

- [1] J.P. Lansberg, *Phys. Lett.* **B695**, 149 (2011).
- [2] A. Abulencia et al. [CDF Coll.], Phys. Rev. Lett. 99, 132001 (2007).
- [3] H.S. Chung, C. Yu, S. Kim, J. Lee, *Phys. Rev.* D81, 014020 (2010).
- [4] C.S. Lam, W.K. Tung, *Phys. Rev.* D18, 2447 (1978).
- [5] A. Adare *et al.* [PHENIX Coll.], *Phys. Rev.* **D82**, 012001 (2010).