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Bulk and shear viscosity coefficients for systems composed of quasipar-
ticles with medium-modified dispersion relations are determined within an
effective kinetic theory approach of Boltzmann–Vlasov type. Local conser-
vation of energy and momentum, which is self-consistently embedded in the
kinetic theory, implies in thermal equilibrium thermodynamic consistency
in quasiparticle approaches.
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1. Introduction

Transport coefficients such as bulk and shear viscosities describe the
hydrodynamic response of a system to energy and momentum fluctuations.
In quantum field theories, they can be calculated within the framework of
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linear response theory, i.e. within the Kubo formalism [1,2]. Equally, kinetic
theory, e.g. in form of a linearized Boltzmann equation, is applicable as a
rigorous tool for systems with weak interaction strength [3, 4].

The essential quantity in these considerations is the symmetric energy-
momentum tensor, Tµν , describing the system. Local conservation of energy
and momentum are then comprised in the relativistic equations of motion
∂µT

µν = 0. In the absence of additional conservation laws, i.e. of addi-
tional conserved currents related to internal symmetries, these are the only
equations determining the hydrodynamical evolution of the system.

The energy-momentum tensor can be decomposed [3,4,5] into a thermal
equilibrium part Tµν(0) and dissipative corrections Tµν(1) , i.e. Tµν = Tµν(0) +Tµν(1) ,
where Tµν(0) = εuµuν − P∆µν . When including only the first-order gradients
of the fluid four-velocity field uµ(x), then Tµν(1) = ζ∆µν∂αu

α + ηSµναβ∂
αuβ .

Here, ε and P denote energy density and thermodynamic pressure of the
system in thermal equilibrium, respectively, which are related through the
equation of state, P = P (ε). Moreover, ζ and η represent the bulk and
shear viscosity coefficients, respectively. The projector ∆µν is defined as
∆µν = gµν − uµuν , where uµ is normalized by uµuµ = 1 and gµν denotes
the metric tensor with signature (+,−,−,−). This projector is orthogonal
to uµ, i.e. uµ∆

µν = 0, and obeys in addition ∆µν∆
ν
ρ = ∆µρ. The projector

Sµναβ = ∆µ
α∆ν

β + ∆µ
β∆

ν
α − 2∆µν∆αβ/3 is also uµ-orthogonal and satisfies

SρωαβS
µν
ρω = 2Sµναβ , ∆

α
µ∆

β
νS

µν
αβ = 10 and ∆µνS

µν
αβ = 0. With these definitions,

the trace of Tµν reads Tµµ = ε− 3P + 3ζ∂αuα.
The temperature T and the fluid four-velocity uµ can be defined in such

a way that the local fluid rest frame is determined from a vanishing local
momentum density T 0i. With the above decomposition of Tµν , the energy
density can be defined by the projection ε = Tµνuµuν = Tµν(0)uµuν , i.e.
Tµν(1)uµuν = 0. This is the Landau–Lifshitz condition [3, 5], which provides
the only uniform definition of local flow for systems without additional con-
served currents [6].

In this work, the viscosity coefficients for systems of quasiparticle exci-
tations with medium-dependent dispersion relations are studied. The quasi-
particle concept was shown to be a powerful tool to describe properties of
strongly correlated many-particle systems [7]. The consideration of elemen-
tary, collective motions in terms of quasi-stationary single-particle states
with limited life-times leads to a significant simplification in the description
of such systems.

We restrict our investigations to thermal systems with ζ and η as the only
independent transport coefficients in Tµν(1) . Here, the explicit derivation of
ζ and η follows the theoretical framework outlined in Ref. [8]. Accordingly,
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by considering quantum statistics, the individual components of Tµν , i.e.
in particular of Tµν(1) , are determined self-consistently. The usual procedure
is then to obtain ζ and η from individual components of Tµν(1) by using a
particular velocity profile [9]. Here, instead, we determine the viscosity
coefficients from the full covariant form of the energy-momentum tensor
distortion from equilibrium by employing suitable projections.

2. Energy-momentum tensor

For systems of quasiparticles with dispersion relation E =
√
~p 2 +Π,

where Π denotes a momentum independent effective quasiparticle mass,
which in thermal equilibrium depends on T , the energy-momentum ten-
sor emerges from an effective kinetic theory [10, 11]. The latter takes into
account that the temperature is space-time dependent such that the quasi-
particle energy E(x) depends also on space and time via Π(x). Then, the
space-time behavior of the single-particle distribution function f(x, p), which
accounts for the phase-space probability density of quasiparticles, is governed
by the Boltzmann–Vlasov type equation [3](

pα(x)∂α +
√
Π(x)Fα(x)

∂

∂pα(x)

)
f(x, p) = C[f(x, p)] . (1)

Here, pα(x) = (E(x), ~p ) and the gradient of Π(x) acts as an external force,
Fα(x) = ∂αΠ(x)/(2

√
Π(x)) with pαF

α = 0, which is changing the four-
momenta of quasiparticles between collisions. The collision term C[f(x, p)],
which is not influenced by Fα(x), is a functional of f(x, p) and comprises all
relevant microscopic scattering processes, which conserve locally energy and
momentum. Note, that p0 and ~p in Fα(∂/∂pα) in (1) must be considered as
independent variables [3].

Regarding the space-time dependence of p0(x), the kinetic equation (1)
may be written as

∂µ

∫
d3~p

(2π)3E(x)
pµ(x)pν(x)f(x, p)−1

2
gµν (∂µΠ(x))

∫
d3~p

(2π)3E(x)
f(x, p) = 0 .

(2)
Here, integrals containing partial derivatives of f(x, p) were reformulated
into vanishing surface integrals over a remote surface in momentum space [4].
From (2), the energy-momentum tensor of an isotropic fluid composed of
quasiparticle excitations with medium-dependent dispersion relation
emerges as

Tµν(x) =
∫

d3~p

(2π)3E(x)
pµ(x)pν(x)f(x, p) + gµνB[Π(x)] . (3)
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This expression for Tµν fulfills the equations of motion ∂µT
µν = 0 if the

mean field B[Π(x)] satisfies the consistency condition

∂νB[Π(x)] = −1
2
q(x)∂νΠ(x) (4)

with auxiliary field q(x) defined as [10,11]

q(x) =
∫

d3~p

(2π)3E(x)
f(x, p) . (5)

This ensures also that the quasiparticle spectrum can be obtained from
E(x) = δT 00(x)/δf(x, k).

The term gµνB[Π(x)] in Tµν , which can be interpreted as potential
energy contribution, accounts for the fact that the quasiparticle properties
are influenced by the background field created by all other excitations in the
medium. Assuming that the space-time dependence of the functional B is
solely determined byΠ(x), which in turn depends on x only via the auxiliary
field, it follows that

B[Π(q(x))] =
1
2

q(x)∫
0

Π(q′)dq′ − 1
2
q(x)Π(q(x)) . (6)

The auxiliary field depends on x both explicitly via f(x, p) and implicitly
via Π(x) in E(x). Thus, E itself is a functional of the distribution function
via Π(q(x)) [12, 13, 14]. In thermal equilibrium, this approach recovers the
quasiparticle model [15,16,17] defined through

Tµν(0) =
∫

d3~p

(2π)3E0
pµpνf0

[
E0
]

+ gµνB0[Π(T )] , (7)

where pµ = (E0, ~p), E0 =
√
~p 2 +Π(T ) and f0[E0] is the equilibrium dis-

tribution function. The consistency condition (4) becomes the stationarity
condition [18]

∂B0[Π(T )]
∂Π(T )

= −1
2

∫
d3~p

(2π)3E0
f0
[
E0
]
, (8)

which is necessary to guarantee thermodynamic self-consistency.
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3. Small deviations from thermal equilibrium

For small deviations from thermal equilibrium, the distribution func-
tion f(x, p) can be expanded around the equilibrium distribution function.
Consequently, the energy-momentum tensor can be decomposed as Tµν =
Tµν(0) + δTµν . Since E is a functional of f(x, p), the equilibrium distribution
function, in line with (7), is given by f0[E0], where E0 is the quasiparticle
energy in equilibrium. For a system with small deviations from equilib-
rium one has E = E0 + δE. Consequently, deviations in f from f0[E0]
are associated with the deviation δE as well as with deviations in T , i.e.
δf0 ' (∂f/∂E)|E0δE + (∂f/∂T )|E0δT for f = f0[E0] + δf0. Correspond-
ingly, the mean field term B changes from B0 to B = B0 + δB.

The structure of the kinetic equation (1) is such that the full quasipar-
ticle excitation energy E enters the collision term. Thus, Eq. (1) must be
linearized around f0[E], because C[f0[E]] = 0 according to the principle
of detailed balance [4, 13, 14]. In this way, one finds equivalence between
kinetic theory approaches and Kubo’s formalism, as was shown for some
special theories in [10,11,19,20].

Nevertheless, we stress that f0[E] does not represent the correct equilib-
rium distribution function for quasiparticles in thermal equilibrium. De-
viations in f from f0[E] are associated with deviations in T only, i.e.
δf ' (∂f/∂T )|EδT for f = f0[E] + δf . It is this δf , which is determined
from the kinetic equation in such a way that f is the solution of (1). Thus, it
is mandatory to express δTµν in terms of δf . The expansions around f0[E0]
and f0[E] are related via f0[E]−f0[E0] ' (∂f0[E]/∂E)|E0δE. Moreover, as
the distribution function has to be unique, one finds the connection between
the deviations in both expansions as δf0 ' δf + (∂f0[E]/∂E)|E0δE.

With these definitions, the individual components of Tµν can be studied.
Applying in T 00 = T 00

(0)+δT
00 the expansions E = E0+δE and B = B0+δB

in line with f = f0[E0] + δf0, one finds

δT 00 =
∫

d3~p

(2π)3
E0δf0 . (9)

To obtain Eq. (9), we have used δE = δΠ/(2E) and δB = (∂B/∂Π)δΠ
and applied Eqs. (4) and (5). In this way, variations of all quantities which
depend on the distribution function are taken into account. Eq. (9) can be
reformulated by employing the connection between δf0 and δf as well as
δE ' δΠ/(2E0), yielding

δT 00 '
∫

d3~p

(2π)3

(
E0δf +

1
2
∂f0[E]
∂E

∣∣∣∣
E0

δΠ

)
. (10)
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Considering quantum statistics, f0[E] = d/(eE/T ± 1) in the local fluid
restframe, where d is a degeneracy factor and +(−) applies for fermions
(bosons). In this case, one finds with δf ' (∂f0[E]/∂T )|E0δT that
(∂f0[E]/∂E)|E0(δΠ/2) ' −(T 2/E0)(∂Π/∂T 2)δf and consequently

δT 00 '
∫

d3~p

(2π)3E0

((
E0
)2 − T 2 ∂Π

∂T 2

)
δf . (11)

For the spatial components of the energy-momentum tensor the expan-
sion f = f0[E] + δf can be applied. Relating f0[E] with f0[E0], approxi-
mating 1/E ' 1/E0 and using

δB ' −1
2

∫
d3~p

(2π)3
f0
[
E0
]

E0
δΠ , (12)

where terms of O(δT 2) are omitted, one gets for δT ij in T ij = T ij(0) + δT ij

δT ij '
∫

d3~p

(2π)3
pipj

E0
δf . (13)

Combining the results for the individual components of the energy-
momentum tensor and generalizing to the frame, where matter flows with
four-velocity uµ, one arrives at [11]

δTµν =
∫

d3~p

(2π)3E0

(
pµpν − uµuνT 2 ∂Π

∂T 2

)
δf . (14)

4. Relaxation time approximation

The deviation δf entering (14) can be determined via the relaxation time
approximation to the kinetic equation (1). In this approximation, one as-
sumes that collisions lead to an exponentially fast relaxation towards thermal
equilibrium within the relaxation time τ [21]. Accordingly, δf is approxi-
mated by

δf = − τ

E(x)
C[f(x, p)] , (15)

i.e. the complexity of the collision term in (1) becomes encoded in a single
coefficient τ , which depends on the relevant scattering processes and is,
thus, in principle four-momentum dependent. Making use of (1), one finds
at leading order that

δf = − τ

E0

(
pα∂α +

1
2
∂αΠ(T )

∂

∂pα

)
f0
[
E0
]
, (16)
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which becomes

δf =
τ

E0
f0
[
E0
] (

1∓ d−1f0
[
E0
])(

pα∂αφ+ 1
2∂

αΠ(T )
∂φ

∂pα

)
(17)

for f0[E0] = d/(eφ ± 1) with φ = pµuµ(x)/T (x).
In the following, the usual decomposition ∂α = uαD+∇α with convective

derivativeD = uρ∂ρ and spatial gradient operator∇α = ∆αβ∂
β is employed.

The term ∝ pα∂αΠ, which appears in pα∂αφ, vanishes due to the kinematic
condition pαFα = 0. In addition, with the help of the equations of motion
in lowest order, Duα = ∇αP/(ε + P ) [5], it can be shown that the spatial
gradient of the temperature ∇αT is exactly canceled in pα∂αφ via ∇αP/(ε+
P ) − (∇αT )/T = 0 since ε + P = T (∂P/∂T ). Convective derivatives DT
stemming from pα∂αφ and from ∂αΠ(∂φ/∂pα)/2 = (∂Π/∂T )(DT/T )/2 can
be converted into spatial gradients of the four-velocity ∇ρuρ by making use
of the equation of state ε = ε(P (T )) and of the equation of energy in lowest
order, Dε = −(ε + P )∇ρuρ [5]. In this way, all leading-order gradients
of uµ appearing in δf are taken into account. Together with the identity
pαpσ∇αuσ = pαpσSγδασ∂γuδ/2 + pαpσ∆ασ∇ρuρ/3 and with (pu) = pαuα, one
finds from (17) that

δf =
τ

E0
f0
[
E0
] (

1∓ d−1f0
[
E0
]){[ 1

3T
pµpα∆µα

+
(

(pu)2

T
− 1

2
∂Π

∂T

)
∂P

∂ε

]
∇ρuρ +

1
2T

pµpαSγδµα∂γuδ

}
, (18)

where +(−) applies now for bosons (fermions).

5. Landau–Lifshitz condition and viscosity coefficients

Inserting (18) into (14), δTµν is found to be solely a functional of the
correct equilibrium distribution function. With the tensor structure identi-
ties ∫

d3~p

(2π)3
F1 (pµpν − uµuνa) =

1
3
∆µν

∫
d3~p

(2π)3
F1

(
p2 − (pu)2

)
(19)

and∫
d3~p

(2π)3
F2 (pµpν − uµuνa) pαpσSγδασ =

1
10
Sµνγδ

∫
d3~p

(2π)3
F2 p

αpβpσpτSαβστ

(20)
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for

F1 = f0
[
E0
] (

1∓ d−1f0
[
E0
]) τ

(E0)2

{[(pu
T

)2
− 1

2T
∂Π

∂T

]
T
∂P

∂ε

+
1

3T
(
p2 − (pu)2

)}
, (21)

F2 =
1

2T
f0
[
E0
] (

1∓ d−1f0
[
E0
]) τ

(E0)2
, (22)

where a = T 2(∂Π/∂T 2) and p2 = pαpα, Eq. (14) may be written as

δTµν =
1
3
∆µν∇ρuρ

∫
d3~p

(2π)3
F1

(
p2 − (pu)2

)
+

1
10
Sµνγδ∂γuδ

∫
d3~p

(2π)3
F2

4
3
(
p2 − (pu)2

)2
, (23)

where we have used that pαpβpσpτSαβστ = 4(p2 − (pu)2)2/3.
To make the decomposition of f(x, p) unique, the Landau–Lifshitz con-

dition uµuνδT
µν = 0 can be imposed in addition. This condition may be

formulated as

0 =
∫

d3~p

(2π)3
F1

(
(pu)2 − a

)
∇ρuρ

+
2
15
uµuνS

µνγδ∂γuδ

∫
d3~p

(2π)3
F2

(
p2 − (pu)2

)2
. (24)

By definition, the second term vanishes and, therefore, likewise δTµν =
δTµν + uαuβδT

αβ X∆µν can be considered, where X must be momentum
independent, yielding

δTµν =
1
3
∆µν∇ρuρ

∫
d3~p

(2π)3
F1

{(
p2 − (pu)2

)
+ 3X

(
(pu)2 − a

)}
+

2
15
Sµνγδ∂γuδ

∫
d3~p

(2π)3
F2

(
p2 − (pu)2

)2
. (25)

The shear and bulk viscosity coefficients can be obtained by comparing
δTµν in (25) with the definition of Tµν(1) , cf. [8, 22, 23]. The corresponding
shear viscosity reads

η =
1

15T

∫
d3~p

(2π)3
f0
[
E0
] (

1∓ d−1f0
[
E0
]) τ

(E0)2
(
p2 − (pu)2

)2
. (26)
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The bulk viscosity is obtained as

ζ =
1

3T

∫
d3~p

(2π)3
f0
[
E0
] (

1∓ d−1f0
[
E0
]) τ

(E0)2

{(
(pu)2 − a

) ∂P
∂ε

+
1
3
(
p2 − (pu)2

)}{(
p2 − (pu)2

)
+ 3X

(
(pu)2 − a

)}
, (27)

where ∇ρuρ = ∂ρu
ρ was used. Choosing, in particular, X = ∂P/∂ε, one

finally arrives at

ζ =
1
T

∫
d3~p

(2π)3
f0
[
E0
] (

1∓ d−1f0
[
E0
]) τ

(E0)2

×
{[

(pu)2 − a
] ∂P
∂ε

+
1
3
[
p2 − (pu)2

]}2

. (28)

6. Discussion and conclusions

The viscosity coefficients derived above depend on the distribution func-
tion and quasiparticle energy in thermal equilibrium. They deviate from
previous results, cf. e.g. [9], due to the medium-modified dispersion rela-
tion and the contribution related to ∂Π/∂T .

In the local fluid rest frame, the factor in parentheses of Eq. (28) may be
written as

[(
E0
)2 − a] ∂P/∂ε− ~p 2/3 = ~p 2 (∂P/∂ε− 1/3) + ∂P/∂ε (Π − a),

such that ζ = 0 when ∂P/∂ε = 1/3 and (Π − a) vanishes. Thus, the terms
(∂P/∂ε − 1/3) and (Π − a) account for the deviation of the system from
conformal invariance.

To explicitly quantify ζ and η, one needs to specify the effective quasi-
particle mass Π(T ). In a gluon plasma, Π(T ) can be obtained such that
corresponding lattice QCD results [24, 25] for the equation of state are re-
produced within the quasiparticle model. This, together with a realistic
perturbative-QCD inspired expression for τ [26], allows to calculate ζ and
η [23]. A direct comparison with available lattice QCD results for the trans-
port coefficients [27] shows very good agreement [23]. This indicates that
naive expectations, that systems of weakly interacting quasiparticles should
exhibit large transport coefficients, are not necessarily correct.

A remarkable feature is that the ratio of ζ/η as a function of the con-
formality measure, ∆v2

s = 1/3 − ∂P/∂ε ≥ 0, displays a linear (quadratic)
behavior at large (small) values of ∆v2

s [28]. Such dependencies have been
predicted for strongly (weakly) coupled systems [29,30,31].
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We conclude, that within a quasiparticle approach the equilibrium ther-
modynamics of the gluon plasma can be transferred, via kinetic theory
principles, to quantities which describe deviations from local equilibrium
in agreement with general principle predictions.
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