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We present some recent developments in our study of inhomogeneous
chiral symmetry breaking phases in the Nambu–Jona-Lasinio model. First,
we investigate different kinds of one- and two-dimensional spatial mod-
ulations of the chiral condensate within the inhomogeneous “island” and
compare their free energies. Next, we employ the Polyakov-loop extended
version of the model to study the effects of varying the number of colors
on the inhomogeneous region. Finally, we discuss the properties of an in-
homogeneous “continent” which appears in our model at higher chemical
potentials, and analyze its origin.
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1. Introduction

The study of spatially modulated ground states in strongly interacting
systems is an old topic [1,2,3,4] (see Ref. [5] for a recent review) which has
recently received new attention. It has been argued some time ago that the
favored ground state of a dense Fermi sea of quarks should be characterized
by a spatial modulation of the chiral condensate, at least in the limit of
a large number of colors (Nc) [6, 7]. More recent studies, especially in the
context of quarkyonic matter, seem to support this hypothesis [8, 9, 10].

But also for the physical case of three colors, Nambu–Jona-Lasinio (NJL)-
type model studies have revealed the presence of an inhomogeneous “island”
at intermediate chemical potentials and low temperatures, namely in the
region, where the usual first-order chiral phase transition would occur when
limiting to homogeneous phases only [11, 12, 13]. In particular, the critical
endpoint of the phase boundary is covered by the inhomogeneous region and
thus disappears from the phase diagram [14].
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In this paper, we present some of the most recent results in our NJL-
model study of inhomogeneous chiral symmetry breaking phases. After
briefly outlining our methods for tackling this problem and the technical
difficulties associated with it, we show numerical results for different kinds
of one- and two-dimensional modulations and compare their free energies.
In order to build a bridge towards large-Nc studies, we then consider a
Polyakov-loop extended NJL model for an arbitrary (large) number of col-
ors and see how this modification alters the inhomogeneous phase. Finally,
we discuss the properties of a second inhomogeneous region, which appears
in our model at higher chemical potentials, and try to understand the ori-
gin of this new “continent”. In particular, we investigate whether it is to
be interpreted as a regularization artifact or as a simple consequence of the
model interaction.

2. Inhomogeneous phases in NJL

Starting from the two-flavor Nambu–Jona-Lasinio Lagrangian [15],

LNJL = ψ̄ (iγµ∂µ −m)ψ +G
((
ψ̄ψ
)2 +

(
ψ̄iγ5τaψ

)2)
, (1)

we perform the mean-field approximation, allowing for a spatial dependence
of the scalar and pseudoscalar condensates〈

ψ̄ψ
〉

= S(~x) ,
〈
ψ̄iγ5τaψ

〉
= P (~x) δa3 . (2)

The mean-field Lagrangian can be rewritten by introducing an effective
Hamilton operator H [13, 16]

LMF = ψ̄γ0 (i∂0 −H)ψ −G
(
S2 + P 2

)
, (3)

with H defined as

H = γ0
[
i~γ · ~∂ +m− 2G

(
S + iγ5τaP

)]
. (4)

Explicitly, we can write down H as [13]

H =
(
−i~σ · ~∂ M(~x)
M∗(~x) i~σ · ~∂

)
, (5)

where the chiral representation for the Dirac matrices has been used and we
introduced an effective inhomogeneous “mass” function

M(~x) = m− 2G (S(~x) + iP (~x)) . (6)
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In order to evaluate the thermodynamic potential associated with this (so
far generic) spatially modulated chiral condensate, we work, as customary,
in imaginary time and switch to momentum space. By assuming static (i.e.
time-independent) condensates, we are able to perform explicitly the sum
over Matsubara frequencies and obtain the expression (up to a constant)

Ω(T, µ;M(~x)) = Ωkin(T, µ;M(~x)) +Ωcond(M(~x)) , (7)

with

Ωcond(M(~x)) =
1
V

∫
V

d3x
|M(~x)−m|2

4G
, (8)

where V is the volume of the system, and

Ωkin(T, µ;M(~x)) = −T
∑
En

log
(

2 cosh
(
En − µ

2T

))
, (9)

where the sum is over all eigenvalues En of H in color, flavor, Dirac and
momentum space.

For homogeneous condensates the diagonalization of H in Dirac space
simply gives twice Ep = ±

√
p2 +M2 and the eigenvalue sum may be triv-

ially turned into an integral over all possible momenta. In presence of an
inhomogeneous condensate, however, the diagonalization of H is a highly
non-trivial task, since the quarks may exchange momenta by scattering off
the inhomogeneous condensate. This means that the spatially modulated
mass term will effectively couple quarks with different momenta and the
resulting structure will not be diagonal in momentum space.

In the following we assume to have a lattice structure and, thus, a peri-
odic shape of the modulation. This means that we can expand the modulated
chiral condensate in a Fourier series,

M(~x) =
∑
~qk

M~qke
i~qk·~x , (10)

with discrete momenta ~qk, which form a reciprocal lattice (RL). A generic
element of H in momentum space then takes the form

H~pm,~pn =
(

−~σ · ~pm δ~pm,~pn

∑
~qk
M~qkδ~pn,~pm+~qk∑

~qk
M∗~qkδ~pn,~pm−~qk ~σ · ~pm δ~pm,~pn

)
, (11)

where
∑

~qk
runs over all momenta of the RL, making obvious the non-

diagonal structure of the matrix. In turn, momenta which do not differ
by an element of the RL are not coupled, so that H can be decomposed into
a block diagonal form, where each block can be labeled by a momentum of
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the first Brillouin zone (BZ). This allows to decompose the eigenvalue sum in
Eq. (7) into a momentum integral over the BZ times a sum over the discrete
eigenvalues of each block.

For the simplest case of the so-called chiral density wave (CDW), namely
a plane wave characterized by a single momentum1

M(~x) = Mei
~Q·~x , (12)

the sum in (11) is then obviously given by a single term, and the resulting
BZ-projected matrix within this framework is characterized by a narrow
band structure, with only the first off-diagonal block filled with nonzero
entries.

For general periodic structures, although the numerical diagonalization
procedure is in principle straightforward, its practical implementation turns
out to be computationally demanding. Therefore, in order to simplify the
problem, we limit the generality of our ansatz Eq. (10) for the spatially
modulated condensate and consider simpler, lower-dimensional modulations.

3. One-dimensional modulations

The eigenvalue problem simplifies considerably when the chiral conden-
sate is allowed to vary only in one spatial dimension. In this special case
it has been observed that the dimensionally reduced effective Hamiltonian
becomes formally identical to that of the (1 + 1)-dimensional Gross–Neveu
model [13], for which self-consistent solutions are already well known [17,18,
19, 20]. One finds (from now on we will consider only results in the chiral
limit for simplicity)

M(z) =
√
ν∆sn(∆z|ν) , (13)

where sn(∆z|ν) is a Jacobi elliptic function [21]. For this kind of solutions,
an analytical expression for the eigenvalue spectrum, depending on the ellip-
tic parameter ν and the amplitude of the condensate ∆ can be obtained and
the minimization of the thermodynamic potential may easily be performed
with respect to these two quantities [13]. No numerical diagonalization of
H is thus needed. In particular, Eq. (9) can be written as

1 Some authors introduce an additional factor of two in the exponent,M(~x) = Mei2~q·~x.
This is motivated by the fact that the favored value of | ~Q| is roughly of the order
of 2µ, so that |~q| is of the order of µ. Here, we prefer the definition without the
factor of two, which is more consistent with the general ansatz of Eq. (10) and other
modulations studied in this article.
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Ωkin = −NfNc

∞∫
0

dE ρ(E)(fvac + fmed) , (14)

where all functions which enter the integrand are known analytically [13]:
ρ(E) is the spectral density associated with this kind of solutions, fvac is the
(divergent) vacuum contribution related to the Dirac sea, which we regular-
ize by introducing Pauli–Villars-type counterterms [22]

fvac(E,Λ) =
3∑
j=0

cj
√
E2 + jΛ2 , c0 = −c3 = 1 , c2 = −c1 = 3 ,

(15)
and fmed describes the medium part

fmed(E) = T log
(

1 + e−(E−µ)/T
)

+ T log
(

1 + e−(E+µ)/T
)
. (16)

The resulting phase diagram is shown in Fig. 1. It features a region at
low temperatures and intermediate chemical potentials, where an inhomo-
geneous phase is favored over the homogeneous chirally broken and restored
solutions. At the onset of this inhomogeneous island the chiral condensate
assumes the shape of a single soliton (which is thermodynamically degener-
ate with the homogeneous broken solution) and then progressively varies into
a more sinusoidal shape until it gradually melts when reaching the restored
phase. In this case, all phase transitions are second order [13,14].

It is, of course, possible to restrict the one-dimensional ansatz to some-
thing even simpler, such as a chiral density wave (12) [11, 12] or a real
sinusoidal modulation

M(z) = M cos(Qz) . (17)

When implementing the CDW modulation one finds that the BZ-projected
H is immediately block-diagonal and an analytical expression for the density
of states can be obtained straightforwardly. The thermodynamic potential
can then again be worked out using Eq. (14), with the only difference being a
different expression for ρ(E) [13]. For the real sinusoidal modulation, on the
other hand, a brute-force numerical diagonalization in Dirac and momentum
space is required. Results for the order parameters of these two kinds of
modulation are shown in Fig. 2. After comparing the free energy of these
modulations (see also Section 4.2), one finds that both are favored over the
homogeneous solutions in a very similar window in chemical potential. In
fact, it has been argued [23] that all these inhomogeneous solutions should
share a common second order transition to the restored phase, while the
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Fig. 1. Left: Phase diagram obtained when allowing for solitonic solutions. The
black dotted lines represent the second-order transition lines separating the ho-
mogeneous chirally broken phase (left), the chirally restored phase (right) and the
inhomogeneous phase (shaded region). The solid (blue) line represents the first-
order phase boundary obtained when limiting to homogeneous order parameters. It
is completely covered by the inhomogeneous phase and ends at the “Lifshitz point”,
where the three second-order phase boundaries meet. Right: Mass function M(z)
at T = 0 for two different values of the chemical potential.

onset from the chirally broken phase need not be the same, since in this case
the two phases are separated by a first order line2. Nevertheless, numerical
results show how the onsets of the two phases occur at roughly the same value
of chemical potential, with a slightly larger window for the real sinusoidal
modulation.
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Fig. 2. Amplitude and wave number at T = 0 as functions of the chemical potential
for the CDW ansatz, Eq. (12) (left) and for sinusoidal modulations, Eq. (17) (right).

2 While the solitonic ansatz may assume a shape that is thermodynamically degenerate
with the homogeneous broken case, there is no smooth way for these less general
solutions to approach a spatially constant shape unless for the trivial case M =0 or
Q=0.



Inhomogeneous Islands and Continents in the Nambu–Jona-Lasinio Model 647

4. 2D modulations

While the study of one-dimensional modulations has been able to pro-
vide a first insight on the importance of spatial modulations of the chiral
condensate, it is natural to expect that also higher-dimensional modulations
could appear in the phase diagram of a 3 + 1 dimensional system. Aside
from being a more general ansatz, higher-dimensional modulations are also
unaffected by the instability with respect to fluctuations which prevents the
formation of a true 1D crystalline structure at finite temperature [24].

The procedure for handling a higher-dimensional modulation is, in princi-
ple, identical to that already outlined for the one-dimensional case. However,
for higher dimensions no straightforward analytical results are available and
the numerical diagonalization involves a bigger matrix, since one is dealing
with two- or three-dimensional momenta in H.

An obvious next step is to study two-dimensional modulations. Then
the thermodynamic potential takes the form

Ω = −NfNc

∞∫
−∞

dp⊥
2π

∫
BZ

d2k

(2π)2
∑
λ~k

T log
[
2 cosh

(
E⊥ − µ

2T

)]
+Ωcond , (18)

where p⊥ is the momentum perpendicular to the directions of the spatial
modulation and one introduces E⊥ = sgn(λ~k)

√
λ2
~k

+ p2
⊥, with λ~k being the

eigenvalues of the dimensionally-reduced H, depending on the momentum
~k ∈ BZ.

4.1. Square modulation: egg carton

Since there are no known results to guide the choice for the shape of the
spatial modulation, we should, in principle, study different geometries of the
two-dimensional crystal and for each of them minimize the thermodynamic
potential with respect to the Fourier components M~q on the corresponding
RL. As a first step in this direction we consider a square lattice and a simple
product of cosines,

M(x, y) = ∆ cos(Qx) cos(Qy) , (19)

thus restricting ourselves to the first harmonics only in each direction. This
highly symmetric “egg carton” (shown in Fig. 3) is possibly the simplest real
modulation one could think of in two dimensions3.

3 This ansatz is equivalent to a modulation of the form M(x′, y′) = ∆′[cos(Q′x′) +

cos(Q′y′)], which is one of the shapes discussed in [10]. Here ∆′ = ∆/2, Q′ =
√

2Q
and (x′, y′) is related to (x, y) by a rotation of π/4 about the z-axis.
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Fig. 3. Left: Shape of the egg-carton modulation. Right: Results for Q and ∆

obtained by numerical minimization of the thermodynamic potential for this two-
dimensional ansatz.

After diagonalizing H numerically, the thermodynamic potential (18)
is minimized with respect to the two parameters ∆ and Q, characterizing
amplitude and period of the modulation, respectively. The results of the nu-
merical minimization are presented on the right-hand side of Fig. 3. Their
main features are in qualitative agreement with the one-dimensional exam-
ples discussed before. We find again a sharp onset around µ ≈ 310MeV
and a smooth approach to the restored phase, which is reached at the same
chemical potential as for the 1D modulations via a second-order phase tran-
sition.

4.2. Comparison of different crystalline phases

The results presented in Figs. 2 and 3 have been obtained by assuming
a single ansatz for the mass modulation (CDW, cosine or egg carton) in
each case. Under this restriction, we found that the different inhomogeneous
phases are energetically favored over the homogeneous solutions in a window,
which at T = 0 and for our model parameters lies roughly between µ ≈ 300
and 350MeV.

The next obvious step is now to compare the values of the thermody-
namic potential of these solutions with each other in order to find out which
of them has the lowest free energy. In fact, for the one-dimensional modula-
tions, we know already that the CDW and the cosine are disfavored against
the solitonic solutions, but there could still be higher-dimensional modula-
tions, which have an even lower free energy than the latter. In particular,
it has been argued in the context of quarkyonic matter studies that with
increasing density such higher-dimensional solutions will be favored, at least
in the limit of a large number of colors [9, 10]. On the other hand, using
Ginzburg–Landau (GL) arguments, it has been argued that close to the
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Lifshitz point, 1D modulations should be favored over higher dimensional
ones within this type of models [25]. We, therefore, focus on what happens
for T = 0, where a GL analysis is unable to give reliable results.

The results of this comparison are shown in Fig. 4. One can clearly see
that the solitonic solutions (13) lead to the biggest gain in free energy com-
pared to all the other cases considered. The two-dimensional “egg-carton”,
on the other hand, turns out to be energetically disfavored with respect
to one-dimensional real modulations throughout the whole inhomogeneous
window, while still being favored over the chiral density wave ansatz (12).
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Fig. 4. Comparison of thermodynamic potentials relative to the restored phase for
different kinds of modulations at T = 0.

While a thorough discussion will require the study of several kinds of
2D modulations, these preliminary results seem to indicate that the gain in
condensation energy is not enough to compensate the greater kinetic energy
cost due to the presence of a condensate varying in more than one spatial
dimensions, and thus 1D modulations remain the most favored.

5. PNJL and large Nc

In order to mimic features of confinement, in particular, to suppress the
contribution of free constituent quarks in the confined phase and to include
gluonic contributions to the pressure, the NJL model can be coupled to an
effective description of the Polyakov loop [26, 27, 28, 29]. To this end, the
quarks are minimally coupled to a background gauge field. Furthermore,
a local potential U , which is essentially constructed to reproduce ab initio
results of pure Yang–Mills theory at finite temperature, is added to the
thermodynamic potential. The resulting model is known as the PNJL model,
and within the mean-field treatment the traced expectation value of the
Polyakov loop, `, becomes a new quantity which has to be determined self-
consistently.
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This extension is also possible when dealing with inhomogeneous phases
and has been investigated in Ref. [14] under the simplifying assumption
that the Polyakov loop expectation value ` is spatially uniform. It was
found that the effects of coupling to the Polyakov loop basically amount to
stretching the phase diagram towards higher temperatures, since the effective
confinement suppresses the thermal excitation of single quarks.

On the other hand, the PNJL model has also been used to investigate
the influence of the number of colors on the phase diagram [30]. Here the
coupling to the Polyakov loop is crucial, since the NJL mean-field results
without Polyakov loop are Nc-independent. The study of Ref. [30] was re-
stricted to homogeneous phases, and its main focus was to see how the region
of confined, but chirally restored matter, develops. Some time ago, this was
thought to be a possible manifestation of quarkyonic matter, whereas ac-
cording to the present picture chiral symmetry is inhomogeneously broken
in the quarkyonic phase [8,9,10]. Therefore, since the latter has been derived
in the large-Nc limit, it is particularly interesting to combine the approaches
of Refs. [14] and [30], and to study the behavior of the inhomogeneous phase
in the PNJL model at large Nc.

As the exact implementation of the Polyakov-loop expectation value is
not unique at arbitrary Nc, we follow Ref. [30] and change the function fmed,
Eq. (16), in the thermodynamic potential into

fmed = θ(Ep − µ)` T
(
e−(Ep−µ)/T + e−(Ep+µ)/T

)
+θ(µ− Ep)

[
(µ− Ep) + ` T

(
e−(µ−Ep)/T + e−(µ+Ep)/T

)]
, (20)

which basically amounts to a leading-order expansion for small ` and is, as
such, expected to be accurate at large Nc in the confined phase. For the
shape of the inhomogeneous modulations we consider the one-dimensional
solitonic ansatz, Eq. (13).

Our results for Nc = 3, 10 and 50 are shown in Fig. 5. By increasing
the number of colors, the inhomogeneous phase is enlarged and stretches
towards higher temperatures, approaching the upper limit given by the
pure glue transition temperature (Tc = 270MeV in our parametrization of
the Polyakov loop potential). The transition lines between homogeneous
and inhomogeneous phases become more and more vertical, assuming a
shape resembling the expected form for the phase diagram in the large Nc

limit [31]. The size of the inhomogeneous phase is not dramatically enhanced
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in the µ direction. In fact, in the PNJL model the Polyakov loop decouples
from the NJL sector at T = 0. Therefore, since the latter is Nc-independent
in mean-field approximation, the transitions at T = 0 are unchanged.
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Fig. 5. PNJL phase diagram varying the number of colors: Nc = 3 (left), Nc = 10
(center), Nc = 50 (right). The shaded region indicates the inhomogeneous phase.

6. The inhomogeneous continent

An unexpected feature emerges, when we extend our studies of the phase
diagram to higher values of µ. As shown in Fig. 6, above some critical value
of the chemical potential a second inhomogeneous phase appears, which
seems to extend to arbitrarily high µ with steadily growing amplitude and
wave number of the spatial modulation. This inhomogeneous “continent” is
present for all kinds of spatial modulations we considered, and its onset is
again given by a second-order phase transition. In this case, GL analyses
reveal that the phase boundary is the same for all inhomogeneous solu-
tions [23]. Within some parametrizations, especially when one chooses a
stronger coupling to enforce a larger value of the constituent quark mass in
vacuum, the continent turns out to be even directly connected to the inho-
mogeneous island discussed until now. In fact, indications for this behavior
are already visible in Ref. [13].
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Since the continent appears at relatively high chemical potentials and
with large wave numbers, the first natural interpretation for it is that it is
an artifact of the regularization. While this might indeed be the case, we
will argue that the effect is at least non-trivial. In order to achieve some
better understanding on the observed behavior, it might be worth analyzing
in detail the mechanisms that within the model lead to the formation of
an inhomogeneous condensate. Since, as argued above, we expect these
considerations to be roughly independent of the particular ansatz chosen for
the spatial modulation, we focus on the simplest possible case, namely the
CDW (12).

In this case, we obtain for the thermodynamic potential

Ω −Ωrest = −NfNc

∞∫
0

dE [ρ(E,M,Q)− ρrest(E)]

× [fvac(E,Λ) + fmed(E)] +
M2

4G
, (21)

where the integral corresponds to the kinetic term Ωkin, Eq. (14), and the
M2-term to the condensate term Ωcond, Eq. (8). We have subtracted the free
energy of the restored phase and explicitly indicated the dependence of the
different terms on the Pauli–Villars cutoff Λ, the amplitudeM and the wave
number Q of the CDW. In particular, we note that only the function fvac

depends on the regularization whereas only the density of states depends on
the wave number.

Since the condensate term always disfavors (homogeneous or inhomo-
geneous) chiral symmetry breaking, a necessary condition for a non-trivial
phase is that the first term is negative, i.e. the integral must be positive.
The functions which enter the integrand are displayed in Fig. 7 for several
cases. As shown in the left panel, the Pauli–Villars regularized vacuum func-
tion fvac (solid/red line) is negative for all energies. Hence, in vacuum, the
density of states minus its value for the chirally restored solution should be
negative as well to obtain a positive integrand. Indeed, as seen on the right,
for Q = 0 the difference ρ − ρrest is always negative and its absolute value
increases with increasing M . Thus, a larger constituent quark mass leads
to an increase of the free-energy gain in the kinetic term, which is stabilized
by the condensate term at some optimum value of M . This is the usual
mechanism for spontaneous chiral symmetry breaking in vacuum.

In contrast to fvac, the function fmed is positive. Hence, when medium
effects are included, the sum fvac + fmed becomes less and less negative
at small energies until it eventually changes sign. As an example the case
T = 0, µ = 600MeV is shown in the left panel of Fig. 7 (dashed/blue line).
Since at T = 0 the medium only contributes to energies E < µ, the sum
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densates with M = 300MeV (dashed/red line), M = 100MeV (dash-dotted/green
line), and for a CDW with M = 100MeV, Q = 1000MeV (solid/blue line).

fvac + fmed remains negative at large energies, but altogether the formation
of homogeneous condensates, related to a negative function ρ−ρrest, becomes
progressively disfavored by the medium contributions, thus leading to chiral
restoration if we restrict ourselves to Q = 0.

The situation changes, however, when we allow for a CDW with Q >
2M . In this case, ρ − ρrest is positive at small energies and changes sign
at E ≈ Q/2 −M2/(2Q) (see Fig. 7, solid/blue line on the right). Hence,
by properly choosing Q, it can be achieved that the factors fvac + fmed and
ρ − ρrest have the same sign for all energies, thus more or less optimizing
the free energy gain in the kinetic part of the thermodynamic potential. As
fvac +fmed changes sign slightly below E = µ at large µ, this estimate yields
Q ≈ 2µ for the favored value.

These arguments support the statement that the formation of an inho-
mogeneous chiral condensate is a medium-induced effect [8, 11, 12]. In our
case it is technically related to the fact that both, ρ−ρrest with Q > 2M and
fmed, are positive at small energies. Therefore, since none of these functions
but only the vacuum term is affected by the regularization, the appearance
of the continent does not immediately look like a regularization artifact.

Of course, the dynamical formation of the inhomogeneous condensate
eventually depends on the interplay of fvac and fmed, and the explicit expres-
sion for the Dirac sea term will naturally influence the quantitative details.
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For example, by allowing for a larger cutoff Λ, the vacuum part becomes
larger and the continent is shifted to higher chemical potentials. However,
the same is true for the standard chiral phase transition between homoge-
neous phases, where this is usually not considered to be a major problem.

The existence of the inhomogeneous continent is not restricted to Pauli–
Villars regularization, but the very same behavior is also present when the
vacuum term is regularized following the Schwinger proper-time prescrip-
tion. On the other hand, when the thermodynamic potential is regularized
by introducing a three-momentum cutoff, it is clear from Eq. (11), that a
restriction of the in- and outgoing momenta also restricts the size of the wave
number to which they can couple. Hence, large values ofQ are strongly disfa-
vored and the second inhomogeneous phase, if it exists at all, cannot extend
to arbitrary large values of µ. However, unlike the previous examples, this is
obviously a regularization effect, since the suppression of large Q is directly
caused by the cutoff. In fact, for this reason the use of a three-momentum
cutoff was abandoned in Ref. [16] in the context of inhomogeneous color
superconductors4.

An example, where large values of Q are suppressed in a seemingly more
physical way, is the quark–meson (QM) model, defined by the Lagrangian

LQM = ψ̄
(
iγµ∂µ − g

(
σ + iγ5τaπ

a
))
ψ − 1

2 (∂µσ∂µσ + ∂µπ
a∂µπa) + U(σ, π) .

(22)

Here σ and ~π are elementary meson fields and U is a Mexican-hat type meson
potential, leading to spontaneous chiral symmetry breaking. While NJL and
QM model are formally quite similar, in the latter the vacuum contribution
is usually omitted when performing a mean-field treatment. On the other
hand, for CDW ansatz, which for the QM model reads σ(~x) = fπ cos( ~Q · ~x),
π3(~x) = fπ sin( ~Q · ~x), the kinetic term of the mesons yields a contribution

Ωmesons
kin = 1

2f
2
πQ

2 , (23)

which suppresses large values of Q (see Ref. [5] for more details). As a result,
the inhomogeneous continent is not present in the QM model, as far as we
can tell numerically.

From this one might naively conclude that the emergence of the continent
in the NJL model is due to absence of derivative terms in the Lagrangian.
However, it is well known that in the NJL model the contribution (23) is
already contained in the vacuum part of the thermodynamic potential, which

4 For the same reason the authors of Ref. [10] introduce a form factor, which restricts
the quark momenta to the vicinity of the Fermi surface, rather than to small absolute
values.
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carries a dependence on Q through the energy spectrum [5, 12, 32]. Indeed,
if one expands

Ωvac(M,Q) = Ωvac(M, 0) + βvac,2Q
2 + βvac,4Q

4 + . . . (24)

one can show in a regularization independent way that the so-called spin
stiffness is given by

βvac,2 = 1
2f

2
π , (25)

giving rise to a term like Eq. (23) in the thermodynamic potential. Hence, if
we were allowed to neglect all other terms in Eq. (24), we could conclude that
large values of Q and, thus, the inhomogeneous continent are suppressed in
the same way as in the QM model. However, in the continent region, Q is
certainly not small (compared withM or fπ). In any case, it is clear that the
stability against large values of Q cannot be discussed in terms of a Taylor
expansion for small Q.

We, therefore, look at the higher orders in the series in order to get
an idea how these additional contributions (which become more and more
relevant at higher values of Q) influence the previous considerations. In
particular, the coefficient of the Q4-term is dimensionless and therefore ex-
pected to stay finite, even if the cutoff is sent to infinity. For instance, if we
employ proper-time regularization (see e.g. Ref. [12]), we obtain

βvac,4 = −2NfNc e
−M2/Λ2Λ2 −M2

192Λ2π2
= −

NfNc

81π2
+O

(
M2

Λ2

)
. (26)

The most important observation is that this term is negative, i.e. it weakens
the effect of the Q2-term. Although the value of the coefficient is relatively
small, the Q4-term dominates the Q2-term when Q is of the order of 10
times fπ.

In Fig. 8 we compare the full proper-time regularized vacuum thermody-
namic potential with the results of a Taylor expansion to the orders Q2 and
Q4. In agreement with our considerations above, the Q2-result gets reduced
by the higher orders. Although the effect is overestimated by the Q4-term,
this leads to a much more moderate increase of Ωvac in the continent region.
As a consequence, the vacuum contributions do not disfavor the formation of
a CDW strongly enough in this region to compete with the favoring effects
of the medium contributions.

A very systematic investigation of the large-Q behavior of the vacuum ef-
fective potential has been performed more than 20 years ago in Ref. [33]. Al-
though it turned out that the exact behavior beyond the universal
Q2-order is strongly regularization dependent, in all cases considered,
Ωvac eventually becomes negative, meaning that even the vacuum is unsta-
ble against the formation of a CDW with very large Q. While this is clearly
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Fig. 8. Proper-time regularized vacuum thermodynamic potential for a CDW with
fixed amplitude M = 100MeV as a function of the wave number Q, using parame-
ters from [12]. The value for Q = 0 has been subtracted. The full result (solid/black
line) is compared with the Taylor series truncated at order Q2 (dashed/red line)
and order Q4 (dotted/blue line).

unphysical and should, therefore, be ignored, there is no reason why cor-
rections to the Q2-terms should not be present at all. Unfortunately, these
corrections are very model dependent and theoretical input from outside is
needed to pin them down. In fact, inhomogeneous phases at arbitrary large
µ have been predicted for the (1 + 1)-dimensional Gross–Neveu model [19]
as well as for QCD in the large-Nc limit [6]5. Therefore, the continent may
be not as exotic as it appears.

7. Conclusions

We presented some of our recent results related to inhomogeneous chi-
ral symmetry breaking phases in the NJL model. Thereby one focus was a
comparison of different spatial modulations of the chiral condensate, includ-
ing an “egg carton”-like two dimensional ansatz and several one-dimensional
functions. For all of them we observed the emergence of an inhomogeneous
“island” around the region, where the usual first-order chiral phase transition
would occur for homogeneous phases.

A comparison of the free energies at T = 0 seems to support the idea that
one-dimensional modulations are favored over higher dimensional ones. In
particular, solitonic solutions [13] inspired by analytical studies of
(1 + 1)-dimensional models seem to constitute the favored state. While
only one kind of two-dimensional ansatz has been considered so far, it may

5 For Nc = 3, they are, however, disfavored against color superconductivity [7].
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very well be that this feature is valid in general for all kinds of 2D modula-
tions. In fact, it has already been argued in a Ginzburg–Landau study that
this is the case in proximity of the critical point [25].

The inhomogeneous island also exists in the Polyakov-loop extended NJL
model. In this framework, we have studied the effects of varying the number
of colors on the phase diagram. We found that with increasing Nc the
inhomogeneous phase is stretched towards higher temperatures so that the
boundaries between homogeneous and inhomogeneous phases become more
and more vertical. On the other hand, the size of the inhomogeneous phase
in the µ direction is not enhanced dramatically.

Finally, we investigated the origin of the inhomogeneous “continent”, i.e.
a second inhomogeneous phase which appears in our calculations at higher
chemical potential and does not seem to end. We discussed the reliability of
our model in the region, where the continent appears, focusing on effects of
the regularization process. It turned out that the continent is not the result
of a trivial cutoff artifact but, unfortunately, regularization dependencies,
including a known vacuum instability [33], preclude the model from giving
definite answers about the phase structure in this regime.

We thank the organizers for a very interesting workshop. Travel sup-
port by HIC for FAIR (S.C.) and by the DFG under contract BU 2406/1-1
(M.B.) is gratefully acknowledged. This work was partially supported by the
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and by the Helmholtz Research School for Quark Matter Studies H-QM.
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