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Transport coefficients can be obtained from 2-point correlators using
the Kubo formulae. It has been shown that the full leading order result
for electrical conductivity and (QCD) shear viscosity is contained in the
re-summed 2-point function that is obtained from the 3-loop 3PI effective
action. The theory produces all leading order contributions without the ne-
cessity for power counting, and in, this sense, provides a natural framework
for the calculation and suggests that one can calculate the next-to-leading
contribution to transport coefficients from the 4-loop 4PI effective action.
The integral equations have been derived for shear viscosity for a scalar
theory with cubic and quartic interactions, with a non-vanishing field ex-
pectation value. We review these results, and explain how the calculation
could be done at higher orders.
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1. Leading order transport coefficients from the nPI
effective action

It is well known that selective resummations can play an important role in
quantum field theory. A prominent example is the hard thermal loop theory,
which includes screening effects that regulate infra-red divergences. The
convergence of such perturbation theories can typically be improved using an
n-particle irreducible (nPI) effective action. In addition, nPI approximation
schemes can be used to study far from equilibrium systems.

Although the nPI effective action is consistent with the global sym-
metries of the theory, symmetry identities for n-point functions may not
be satisfied during intermediate steps of the calculation [I,2]. For scalar
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theories, Goldstone’s theorem may not be satisfied, and for gauge theories,
Ward identities can be violated. To address this problem, we look at the
resummed nPI effective action, which is defined with respect to the self con-
sistent solutions of the n-point functions. This type of strategy was originally
proposed by Baym and Kadanoff [3]. The resummed effective action respects
all symmetry properties of the theory, and the n-point functions which are
obtained by functional differentiation satisfy Goldstone’s theorem, or the
Ward identities.

Transport coefficients can be calculated from the Kubo formulae. Con-
ductivity and shear viscosity are obtained from the zero frequency limit of
the 2-point function. This limit produces pinch singularities, which come
from pairs of retarded and advanced propagators which carry the same mo-
menta. When integrating a term of the form [dpy G™'(P)G2¥(P), the
integration contour is ‘pinched’ between poles on each side of the real axis,
and the integral contains a divergence called a ‘pinch singularity’. These
divergences are regulated by using resummed propagators which account for
the finite width of thermal excitations. This procedure introduces extra fac-
tors of the coupling in the denominators which change the power counting.
As a consequence, in even the leading order (LO) calculation, there is an
infinite set of graphs which contain products of pinching pairs that need to
be resummed. This is accomplished by solving an integral equation whose
kernel is the square of the matrix elements that correspond to the 2 — 2
scattering and production processes. In gauge theories, in addition to pinch
singularities, the presence of collinear singularities makes 2 — 3 scatterings
as important as 2 — 2 scatterings. These collinear terms are resummed by
another integral equation. The complete LO result is obtained by solving
the two coupled integral equations.

The integral equations that resum pinch and collinear singularities can
be obtained from the equations of motion (eom’s) of the 3-loop 3PI effective
action [4,5,6]. Gauge invariance is automatically satisfied, and all LO terms
appear without the need for any kind of power counting arguments.

2. Next-to-leading order transport coefficients

Little progress has been made on the calculation of transport coefficients
beyond LO (see however [7,8,9]). Since power counting is notoriously dif-
ficult, and becomes increasingly complicated at higher orders, nPI effective
theories could provide a useful method to organize the calculation of trans-
port coefficients at next-to-leading order (NLO).

In spite of the complexity of the nPI effective action, a systematic expan-
sion can be done in a self-consistent way [10]. Using the 4-loop 4P1 effective
action for a scalar theory with cubic and quartic interactions, with non-
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vanishing field expectation value, one can derive the integral equations that
would produce the NLO order contribution to the viscosity [11]. We remark
that the numerical solution of these equations is more difficult than anything
that has been accomplished so far. In addition, renormalizability has not
been demonstrated beyond the level of the 2PT effective action [12,13].

We use a compactified notation in which a single numerical subscript rep-
resents all space-time co-ordinates. For example: the field expectation value
is written ¢ := ¢(x), the variational propagator is written D1y := D(x1, x2),
the bare 4-point vertex is written 1/10234 = Vo(xl,xg,:pg,x4), etc. We also
use an Einstein convention in which a repeated index implies an integration
over space-time variables. Using this notation we write the classical action

1 - . .
Sal¢] = §¢1 [Z (DY,) 1] b2 — éUf§3¢1¢2¢3 - %‘/10234¢1¢2¢3¢4- (1)
The 4PI effective action has the form
I(6.D,UV] = Salé]+ 5Tr LoDy + STr | (D4(@)) ™ (Da1 = D% (9))]
—i®°[p, D,U, V] — i®™[D, U, V]. (2)

The terms @°[¢, D, U, V] and #™[D, U, V] contain all contributions to the
effective action which have two or more loops. The first piece @°[¢, D, U, V]
includes all terms that contain bare vertices. The diagrams up to 4-loops
are shown in Fig. 1.
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Fig. 1. 4-loop 4PI effective action.

There are four eom’s which are obtained by functionally differentiating
with respect to the four functional arguments of the effective action

0I'l¢,D,U, V]

6XZ :07 Xi€{¢,D,U,V}- (3)

The equations obtained by varying with respect to {D, U, V'} can be solved
simultaneously for the self-consistent solutions which are functions of the
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field expectation value: D[¢], U[@], V[¢]. Substituting these self-consistent
solutions we obtain the resummed action, which depends only on the expec-
tation value of the field

Flg) = I |6, Dlg), Ule], Vo] (4)

The re-summed propagator and self energy are defined as
(D) = =S Flol =i [(Dhe) ™ - 53] )

B T |

We can derive an expression for the re-summed 2-point function by taking
derivatives of the resummed effective action and using the chain rule. The
result has the same form as the Schwinger—Dyson (SD) equation and depends
on the 3- and 4-point vertices defined in (6). We also define a 5-point vertex
that we will need below
. . .
(93 = —65;32 ; V934 = 622? ; O12345 = 5;/;2534 . (6)

The vertices in equation (6) satisfy integral equations obtained by taking
functional derivatives with respect to the field expectation value of the ap-
propriate eom (3). These integral equations are shown in Fig. 2. One of
the kernels is shown in Fig. 3. The integral equations for the vertices in (6)
depend on the vertices U and V, which in turn satisfy their own integral
equations, that are obtained directly from (3) and shown in Fig. 4. In all
figures we combine diagrams that correspond to permutations of external
legs. The full NLO contribution to the shear viscosity can be obtained from
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Fig.2. The integral equations for the vertices {2, ¥ and © defined in equation (6).
The kernels are drawn as grey boxes.
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the Kubo formula, where the 2-point function is given by the SD equation
with vertices obtained by solving the set of coupled integral equations shown
in Figs. 2 and 4.
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Fig.3. One of the kernels in Fig. 2.
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Fig. 4. Integral equations for the variational vertices U and V from the 4-loop 4PI
effective action.

3. A new approach to the calculation of the effective action

It is interesting to consider how the calculation would proceed at higher
orders. The nPI effective action is defined as the nth Legendre transform of
the generating functional obtained by coupling to n source terms. A direct
calculation beyond the 4-loop 4PI level is extremely difficult [14], but it
is possible to calculate the effective action without taking any Legendre
transforms [15].

The key to the method is the introduction of a set of fictitious bare
vertices: to obtain the n-loop nPI effective action we include in the La-
grangian the vertices Vj0 for j = 3,4,5,6,... n. The inclusion of the non-
renormalizable interactions (j > 5) is an organizational trick, and these
vertices are set to zero at the end of the calculation. From this point on, we
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consider ¢ = 0 for simplicity, and use the notation V}O and Vj to represent
bare and proper vertices with j legs. Using these fictitious vertices, we can
show that the eom’s and SD equations are equivalent to the order at which
the truncated theory respects the symmetries of the original theory'. This
result allows us to construct the n-loop nPI effective action directly from the
SD equations. The method has been used to reproduce, with comparatively
little effort, the known results for the n-loop nPI effective action with n = 4
and n = 5. The technique has also been used to calculate the 6-loop 6PI
effective action which is, realistically speaking, impossibly tedious to obtain
using Legendre transforms.

The first step is to compare the perturbative expansions of the SD equa-
tions and the eom’s. The complete set of eom’s can be written

Vi = V) + fon) [V0, Vi ] + fon[Vi] . (7)

The functions fen’; V%, V4] and fen;[V;] are defined as:

62° [V, Vi | SOV ]
=9 ' [y — o L1 TR — o7 VK
j=2: feny [V, Vi] = -2 5D , feng [V 2 5D
080 [V0, V] DMV
. . 0 ) — 9 . — k
]23 fCH;- [V} ,Vk] —j'D ]T, anJ[Vk}_]'D jdi‘/}’

(8)

where the hats indicate that the ‘basketball’ diagrams (for example the
2nd-5th diagrams in Fig. 1) which produce the tree terms in (7) are dropped.
The sign difference for the 2-point function and the missing factor D2 oc-
curs because of the fact that it is conventional to write the effective action
as a function of the propagator instead of the inverse propagator.

We can generate the perturbative expansion of any functional of proper
vertices by repeatedly substituting (7). We can also repackage a perturbative
set of diagrams as skeleton diagrams by repeatedly using the same equation
in the form

Vjo =V — fen) [V, V] — fen;[Vi] . (9)

1. If we convert a set of skeleton diagrams for the vertex Vj into a series
of perturbative diagrams using (7), the leading loop order of the new
set of diagrams is greater than or equal to the leading loop order of
the original set.

! The SD equations and eom’s are equivalent only when fictitious vertices are used, and
this result is important only because it allow us to obtain the effective action without
taking a series of Legendre transforms. It is mot true that the non-perturbative
solutions of a truncated set of SD equations are the same as the solutions of the
eom’s obtained from the nPI effective action.
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2. If we include fictitious vertices VjO for 5 < j < n, we can convert
skeleton diagrams to perturbative diagrams using (7), or perturbative
diagrams to skeleton diagrams using (9), and the leading loop order
of the new set of diagrams is equal to the leading loop order of the
original set.

We illustrate these statements with an example. We use Ly to indicate
the loop order of the perturbative expansion. Consider the skeleton diagram
shown in part (a) of Fig. 5, which is of the order of L = 2. We can expand
this diagram as a series of perturbative diagrams using equations of the
form (7) which are shown for this example in part (b) of the figure’. The
LO term is shown in part (c¢), and is of the order of Ly = 2. Thus we have
L = L,y = 2. Now consider the result if we set V50 = 0, which means we
remove the first diagram on the right-hand side of part (b2). In this case,
the LO term is shown in part (d) and is of the order of Ly, = 3. Thus we
see that if the fictitious vertex V50 is set to zero we have Ly; > L.
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Fig.5. Diagrams used to explain items 1 and 2 in Sec. 3.

We consider truncating the nPI effective action at m-loop order®. The
functional derivative of an m-loop graph with respect to the variational
vertex V; opens j — 1 loops. This means that an arbitrary m-loop graph
in the effective action which contains the vertex V; produces a term with
L]m, j] loops in the skeleton expansions of the eom for the vertex Vj;, where

2 The propagators in the skeleton diagrams in Fig. 5 also have to be expanded to obtain
a perturbative diagram. This will produce extra loops that correspond to self energy
corrections. In this paper, we do not introduce notation to distinguish skeleton and
perturbative propagators in diagrams.

3 At m-loops, the nPI effective action is the same as the (n + 1)PI effective action for
n>m+1 [10].
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we define
Lim,jl:=m—j7+1. (10)

Now we consider the Schwinger—Dyson equations, which form an infinite
hierarchy of coupled non-linear integral equations. They have the form
SD _ /0 SD 0 y/SD
VPP = VP 4 fen?” [V, V0P (11)

Although the structure of the SD equations is very different from the eom’s,
it is possible to show [14]:

3. The perturbative expansions of the n-loop nPI eom’s and the SD equa-
tions truncated by setting Vnsfk = V£+k for £ > 1 both match the
perturbative expansion obtained from the 1PI effective action, and

therefore each other, to order Lyt = Lin, j.

This result is perhaps not surprising, since both formalisms should contain
the correct perturbative physics up to the order at which the calculation
is done. Item 3 tells us that both the variational and SD vertex functions
respect crossing symmetry to order Ly = Ln, j|, which we refer to as the
“truncation order”.

We can formally write equation (11) as:

‘/jSD — ‘/jo-f—fCH; [‘/loykaD] +I] [‘/lojkaD] ,

L VP vEP] = fcan-D AR fen/; LAz (12)

Comparing (7) and (12) and using item 3, it is clear that fen;[Vy] and
LVY, VkSD] must match each other in the perturbative expansion to order
Lpt = L[n, j]. Therefore, we can rewrite I;[V,?, VSP] as

L [V, VeP] = feny [VPP] + extra, (13)

where the extra term is of the order of Ly = L[n, j]+ 1. Using item 2 which
1s only true in the presence of fictitious bare vertices, the extra term can be
rewritten as a series of skeleton diagrams of order L = L[n, j] + 1. Thus we
have shown that:

4. In the presence of fictitious bare vertices the SD equations can be
rearranged to have the same form as the nPI eom’s, plus additional
terms of order L = L[n,j] + 1 in the skeleton expansion, which is
beyond the truncation order.
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It is straightforward to use the result in item 4 to calculate the n-loop
nPI effective action from the SD equations. First, use (9) to remove bare
vertices in I; to order L[n,j] for n > j > 3. Then, join the legs of the
resulting equation for I;, set V; = 0 for n > [ > j + 1, and multiply each
diagram by the symmetry factor

Sli) = s(1/v;)(1/5Y), (14)

where s is the numerical factor in front of the diagram in the I}, and v; — 1
is the number of times the vertex V; appears in the diagram.

It is clear that joining the legs in diagrams in the eom’s will produce
all graphs in the effective action at a given order. The trick is to obtain
the correct symmetry factor. Consider starting from a known result for the
effective action @™, taking derivatives of each graph with respect to each
variational vertex, and trying to reconstruct the effective action by joining
the legs in each of these eom’s. A given graph in the effective action will
produce contributions to the eom’s of each vertex it contains. In order to
produce the correct symmetry factor when joining legs, we must drop the
corresponding contribution in all but one eom, which we can take to be the
eom for the largest vertex present. This is accomplished by imposing the
condition V; =0 for n > [ > j 4 1. If the largest vertex appears in a given
diagram in the effective action more than once, the graph that is produced
by joining the legs will have a symmetry factor that is too large by a factor
equal to the number of times the vertex appears. The correct symmetry
factor is produced by including the factor (1/v;) in equation (14).

Following the simple procedure described above, one can reproduce the
known results for the 4-loop 4PI and 5-loop 5PI effective actions. The
method has also been used to calculate the 6-loop 6P1 effective action [15].

4. Conclusions

The LO calculation of transport coefficients involves infinite resumma-
tions of diagrams that can be identified by power counting arguments. The
integral equations that resum these diagrams are produced directly from the
equations of motion of the 3-loop 3PI effective action. This result leads to
the conclusion that nPI effective theories provide a natural framework for the
calculation of transport coefficients beyond leading order. The calculation
of next-to-leading order shear viscosity in scalar theory can be formulated
using the 4-loop 4PI effective action. Higher order effective actions can be
calculated in a efficient way by working with the Schwinger-Dyson equa-
tions.
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