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QUARKYONIC CHIRAL SPIRALS
IN A MAGNETIC FIELD*
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We discuss the formation of quarkyonic chiral spirals in the presence of
a magnetic field. The explicit breaking of the rotational symmetry by the
external magnetic field gives rise to an additional chiral spiral that varies
along the field direction and rotates in the chiral space between pion and
magnetic moment components.
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1. Introduction

Quarkyonic Matter (QyM) is a large N, phase of cold dense quark matter
recently suggested by McLerran and Pisarski [1]. The main feature of QyM
is the existence of asymptotically free quarks deep in the Fermi sea and
confined excitations at the Fermi surface. The quarks lying deep in the Fermi
sea are weakly interacting because they are hard to be excited due to Pauli
blocking. Their interactions are hence very energetic and the confining part
of the interaction does not play any role [2]. On the other hand, excitations
of quarks within a shell of width Agcp from the Fermi surface interact
through infrared singular gluons at large N. and hence are confined.

In has been recently argued [3,4] that chiral symmetry can be broken
in QyM through the formation of a translational non-invariant condensate
that arises from the pairing between a quark with momentum p, and the
hole formed by removing a quark with opposite momentum —p from the
Fermi surface. The inhomogeneous condensate that forms in QyM is a lin-
ear combination of the chiral condensate (1¢), and a spin-one, isosinglet
odd-parity condensate of (1)a%%9)). Here z is the direction of motion of the
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wave. At each given patch of the Fermi surface, z is the direction perpen-
dicular to the surface. The authors of Ref. [3] called this combination of
two inhomogeneous condensates a Quarkyonic Chiral Spiral (QyCS). The
(1pa%%1)) component corresponds to the condensation of an electric dipole
moment. The QyCS is then characterized by a spatial oscillation between
chiral and electric dipole condensates that breaks parity and gives rise to an
inhomogeneous electric field.

On the other hand, a common feature of heavy-ion collisions is the gen-
eration of strong magnetic fields that are produced in peripheral collisions
by the positively charged ions moving at almost the speed of light. For the
Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) at BNL the
field produced is estimated to be ~ 10 G [5]. Even though this magnetic
field decays quickly, it only decays to a tenth of the original value for a time
scale of the order of the inverse of the saturation scale at RHIC [5], hence it
may influence the properties of the QCD phases probed by the experiment.
Strong magnetic fields will likely be also generated in future experiments
planned at the Facility for Antiproton and Ion Research (FAIR) at GSI,
the Nuclotron-Ion Collider Facility (NICA) at JINR, and the Japan Proton
Accelerator Research Complex (JPARK) at JAERI, all of which intend to
complement the experiments at RHIC by reaching regions of even higher
densities and intermediate to low temperatures in the QCD phase map.

In this paper, we discuss the effects of an external magnetic field on QyM.
As will be seen below, the presence of a magnetic field of strength comparable
to the square of the QCD scale gives rise to the formation of a second chiral
spiral, given by the spatial oscillation between a pion condensate (1)y51))
and a spin-one condensate (¢y!y21)). The spin-one condensate corresponds
to an inhomogeneous magnetic moment in the direction of the field.

2. Quark self-energy in a magnetic field

We are interested in studying the large N, properties of dense quark mat-
ter in the presence of a magnetic field B within a region, where screening
effects are not strong enough to eliminate confining and hence the quarky-
onic phase can exist. Such a region can be defined by the condition mp <«
Aqep < p, with mp the screening mass and p the quark chemical poten-
tial [4].

Our goal is to investigate the self-energy for quarks near the Fermi surface
and in the presence of an external magnetic field. With that aim, we need to
consider the Schwinger—Dyson equation for the quark self-energy Xp(x,x’)
in a magnetic field,

S (2.0%) = $1AG (2.07) 1P DA (1 — o) 1)
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with G g(z, 2’) the full quark propagator in the presence of B and D/‘fyB (x—1')
the gluon propagator. Without loss of generality we choose the gauge
A, = (0,0, —Bz1,0) for the electromagnetic field. It produces a constant
magnetic field in the xg-direction.

Using Ritus’s method [6], the transformation to momentum space of the
quark propagator and self-energy can be done with the help of the matrix
eigenfunctions

E, = Z Epo(x)A(0) (2)

o=+1

of the asymptotic states of the charged fermions in a uniform magnetic field,
/4 . )

where Ej,(z) = %el(mx%mx?*m“d)Dn(/}) are the corresponding

eigenfunctions, with D, (p) the parabolic cylinder functions of argument

p=+/2lefBl(x1 —p2/efB), and A(o) = W being the spin projectors.
The E,;(x) depend on the spin projection, o, and Landau level, [ > 0, of the
fermion through the non-negative integer n = n(l,0) =1+ sgn(eyB)% — 1,
ef is the electric charge of flavor f.

In momentum space Eq. (1) becomes

4
@n)'5* (o =) o) = " [ 2L D)

x i o / d'ze By (@) By () T G (9", 1)
o » v ! ;
X /d4$/eiq'zlEp”(x/)VyEp’(f)’ 3)

where

X (p,p) = /d4a:d4x]Ep(:c)Z(a:,x)Ep(x)

= (2m)*"W (p—p) I Z'(p), (4)
and we used
dq
AB —iq-(x—=x AB
DMV (.Z‘ - l‘,) = / (27_(4) 7 )Duu (Q>a (5)

and
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Here [G'(p)] " = [y,p?+2'(|p])] " and £'(p) = y(|p])y P+ 2L ([p) 15"+
Ym(|p]), with p; = (po,0,sgn(esB)\/2|esB|l,p3), and || indicates longitu-
dinal components (0,3), while L indicates the components perpendicular to
the external magnetic field. G'(p, ) is defined by G'(p) with the replace-
ment pg — po + . In the above equations, we used the following notation
Yd'p = ¥, [ dpodpadps, Ep(x) = 1°Ejr°, and 6@ (p — p) = 6%6(po —
P0)3(p2 — ph)d(ps — py). The projector IT; = §%A(sgn(esB)) + I(1 —6%) ap-
pears due to the lack of spin degeneracy of the lowest Landau level (LLL) [7].

To consider confined excitations near the Fermi surface, we can use the
Gribov—Zwanziger gluon propagator [3]

8Tt T
AB( N _ _;
Dy (¢) = _ZdABciFWgo/JQOI/7 (7)

where Cr = (N? — 1)/2N, and the string tension 7 ~ A%QCD'

Since the strength of the magnetic fields produced in the heavy-ion col-
lisions is comparable to the QCD scale, it makes sense to assume that the
external magnetic field satisfies ey B < O(/%CD). Summing in the color
indexes and following derivations similar to those performed in [9], we can
integrate in x, 2’ and p”, and perform the sums in Landau levels and spin
indexes to arrive at

iq? Pqdi® Gl =g
vy 17— Y9 SWTU 91dqT  _s2 G (p — ¢, )0
(p) 1T = — 2 / (2m)3 e (q2)? ’

(8)
- 2 2
where p—q = (po — qo, 0, sgu(esB)\/2lesBIl ps — ¢s) and 47 = 5%,
Because of the Landau quantization of the transverse momentum, the
Fermi surface now is formed by a discrete set of circles, obtained from the
intersection of the cylinders of radius \/2|e;B|l with the spherical Fermi
surface of the system at zero field, as represented in Fig. 1 (a).
After transforming to Fuclidean space, we can readily integrate in ¢,
taking into account that the fermion propagator in Eq. (8) does not depend
on this variable

Neg3 d*q - 1
Shp) I, ~ =207 / lp= .
(p) I, 5 (%)274(? (p q,u)'mq% 9)

. . . . 2 .
Here we introduced a two-dimensional coupling constant g%D = 4]%7. Since
[

p4 only enters in the r.h.s. of (9) in the quark propagator, it can be elimi-
nated with a change of variable. This implies that the self energy is actually
independent of py.
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Fig. 1. (a) Fermi surface in the presence of a magnetic field; (b) Patches.

3. Magnetic quarkyonic chiral spiral

We are interesting in exploring the contribution to the self-energy from
excitations about the Fermi surface on the patches of size ~ Aqcep < p,
situated on opposite sites of the Fermi surface, and which lie perpendicu-
lar to the magnetic field direction (north and south pole patches indicated
in Fig. 1(b)). Quark excitations in these patches satisfy ps ~ p + dps,
with dp3 < Aqep < p, for the momentum component parallel to the field,
and p; = /2|efB|l < Aqcp for the transverse component, so the num-
ber of Landau levels that can contribute to the patch is limited to L =

A2
lmax = [mgifgl], with [...]| meaning integer part. These conditions, together

with the strong infrared behavior in g3 of the gluon propagator, allow us
to neglect \/2|efB|l in |p — ¢| in the integrand and similarly drop the term
Y1 72+/2[ey Bl in £ in both sides of the equation.

As a consequence, any explicit dependence on the Landau level disap-
pears in Eq. (9), except for the projector II;. If | # 0, the two spin projec-
tions contribute and II; becomes the identity matrix. In this case, Eq. (9)
looks exactly like the self-energy equation for two-dimensional QCD in the
axial gauge [3,4]. Eq. (9) is identical to the one found in QyM at zero mag-
netic field [3,4], but since here we have one equation for each [ contained in
the patch, the Landau level becomes a flavor index. Hence, there will be L
identical equations of the form

N_.g2 d?q ) 1
S (ps) ~ CQQD/(QW)'LMG’(MM + 1, q3 —p3)74?, l=1,2,..L.(10)
3
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On the other hand, if [ = 0, II; selects one of the two spin projections
only, “up” for positively charged quarks (e > 0), “down” for negatively
charged quarks (ef < 0).

Then the original 4-dimensional theory for a quark field with electric
charge ey in the presence of a magnetic field maps into a (1+41)-dimensional
theory with flavor symmetry SU(2L)xU(1) described by the Lagrangian

LR = B [il"(Oy + igap Ay + TOp] o

L
+Y B [il" (0, + iganAy) + IO & — 3G, (11)
=1

Here the spinor fields are defined by &f = (@%O),O) and @] = (go%l),cpil)),
with T and | two flavors in the (1+1)-D theory that correspond to the up
and down spin components of the spinor in the 4D theory. The 2D Dirac

I' matrices are defined in term of the Pauli matrices as IV = o!; I'* = —io?;

I = o3,
We can now perform the transformation of the quark fields

@) = exp(—ipzl5s)P;, l=0,...L (12)

to eliminate the chemical potential, which actually remains in the theory
through the anomaly of the baryon charge, and obtain

L
LR =" [il" (9, +iganAp) + TOu] &y — $trG2,
=0

L
= Y B [il* (9, +iganAy)] B — $trG, . (13)
=0

Following arguments along the lines of those discussed in Ref. [3], we
can argue that, in the above theory, chiral symmetry is broken through the
formation of a chiral condensate for each flavor [, giving rise to a total chi-
ral condensate of the form (¢ @) = S (52@;) Performing the inverse
transformation of (12), we obtain two inhomogeneous condensates, oscil-
lating in z, and with equal amplitude forming a spiral in the chiral space:
a quarkyonic chiral spiral, very similar to the one found at zero field

(D) = cos(2uz) <5,d5'> , (PIsP) = —isin(2uz) <5’@'> . (14)
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One can easily check that the amplitude of the chiral spiral found in [3]
can be expressed as a sum of condensates of spin-up and spin-down flavors,
@) = (@1¢%) + (P ¥]). It is now clear why a condensate of the form
(@' 730') = (@)¢}) — (@] ¥)) cannot be present in the QyM at zero magnetic
field (see Ref. [3] for the definition of the flavor matrix 73 in the present
context). There is nothing in the theory at zero magnetic field that can
distinguish between a condensate of spin-up fields and one of spin-down
fields, so physically these two condensates should be the same and they
must cancel out in <§/7'3§l5’ ), in agreement with the results of Ref. [3].

However, a magnetic field can change the value of <5qu5’ ) because the
LLL flavor in the 2D theory has only one spin-flavor component. In conse-
quence, two independent chiral condensates can be formed with the primed
fields. In addition to a chiral condensate of the form

(39) = FOA") + S [0 + (7% 0o

we also have now
(o) = GO B )] o

which is always different from zero due to the LLL contribution, even if the
two spin-flavor terms in the sum cancel out. The new condensate gives rise
to the following second chiral spiral

M=

=1

(D3P) = cos(2uz) <§/7’3§Z5’> ) (D3 5P) =—isin(2u2) <5I7'3§Z5/> .(17)

Going back to the quark fields in the (341)-dimensional theory, the two
chiral spirals in the presence of a magnetic field are

() = Aycos(2uz),  (Py9%)) = Arsin(2uz),  (18)
(Vv ) = Agcos(2uz), (Vy°¢) = Agsin(2uz) . (19)

4. Conclusions

In this paper, we have considered QyM in a magnetic field of strength
close to, but not larger than the QCD scale. We showed that in leading order
in the large N, limit, a (341)-dimensional QCD theory with one flavor can
be mapped into a (1+1)-dimensional QCD theory with 2L 4 1 flavors and
global symmetry SU(2L)xU(1).
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Due to the contribution of the LLL, two independent chiral spirals are
formed in the Fermi surface’s patches perpendicular to the magnetic field.
One, similar to the spiral condensate that forms at zero field, is a combi-
nation of a chiral condensate and an electric dipole condensate, rotating in
the chiral space and varying along the direction parallel to the field. The
other chiral spiral is a combination of a condensate of magnetic moment and
a pion condensate, also varying in the direction parallel to the field. Both
parity and time-reversal symmetries are broken in the system.

The spontaneous generation of inhomogeneous condensates with electric
and magnetic dipole moments may lead to interesting observational impli-
cations. A study of those potential consequences in dense environments like
the cores of neutron stars or the planned high-density heavy-ion collisions
experiments will be addressed in future works.

The work of V.I. and E.J.F. has been supported in part by DOE Nuclear
Theory Grant No. DE-SC0002179. The authors thank Larry McLerran and
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