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We summarize recent results obtained in the Dyson–Schwinger formal-
ism to study the chiral and deconfinement phase transitions of QCD at fi-
nite temperature and chemical potential. We compare the quenched SU(2)
and SU(3) gauge theories and find a clearer distinction between second and
first order transitions as compared to previous studies. For the full theory
with two degenerate quark flavors we find coinciding crossover transition
lines for the chiral and deconfinement transition at finite chemical poten-
tial. These lines merge together at large chemical potential and end in a
critical endpoint followed by a first order coexistence region. Our results
suggest that there is no critical endpoint in the region µ/T < 1.
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1. Introduction

The behavior of quantum chromodynamics at large temperatures and
densities received a lot of attention over the past years and is an ongoing re-
search program from both, theoretical and experimental side. At vanishing
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chemical potential lattice QCD has shown the existence of a crossover from
a region, where chiral symmetry is broken and quarks are confined inside
hadrons to a quark-gluon plasma phase with (approximately) restored chi-
ral symmetry and deconfined quarks. At finite chemical potential, however,
lattice calculations for light quarks are severely limited by the sign problem
making it very difficult to extract information from QCD. Consequently,
the Polyakov loop extended Nambu–Jona-Lasinio (PNJL) and the Polyakov
loop extended quark-meson (PQM) models have so far been the main source
of information at large chemical potential. In general, these models favor a
scenario, where the chiral crossover turns into a first order phase transition
at a critical endpoint joined by the confinement/deconfinement transition
line, see e.g. [1, 2, 3, 4]. At large chemical potentials and relatively small
temperatures, however, there may also exist new phases as e.g. inhomoge-
neous [5, 6] or quarkyonic [7] phases.

An alternative direct approach to non-perturbative QCD without the
sign problem is the framework of Dyson–Schwinger equations (DSEs) [8,9,10]
and the functional renormalisation group [11,12]. QCD with two degenerate
quark flavors has been studied in Ref. [10] by solving the coupled system of
quark and gluon DSEs using quenched lattice data for the gluon propagator
as input. Within this truncation scheme the behavior of the chiral and
deconfinement transitions at finite chemical potential have been investigated
using the first calculation of the dressed Polyakov loop in this region of the
QCD phase diagram. In this proceedings contribution we give an overview of
the employed truncation scheme and summarize the corresponding results.

2. Order parameters for chiral symmetry breaking
and confinement

The central object of our study is the in-medium quark propagator

S−1(p) = i~γ~pA
(
ωn, ~p

2
)

+ iγ4 (ωn + iµ)C
(
ωn, ~p

2
)

+B
(
ωn, ~p

2
)
. (1)

Here µ is the quark chemical potential and ωn = πT (2n + 1) are the
Matsubara modes in the imaginary time formalism with temperature T . The
functions A, C and B dress the vector and scalar parts of the propagator
and are determined selfconsistently from the DSE of the quark propagator.

A possible order parameter for chiral symmetry breaking is the quark
condensate 〈

ψ̄ψ
〉

= Tr[S] = Z2ZmT
∑
n

∫
d3p

(2π)3
TrD [S(p)] . (2)

In the presence of explicit quark masses, the condensate is divergent with
mΛ2 and m2Λ, but since these terms do not depend on temperature and
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chemical potential, the condensate can still be used as an order parameter for
the regularized theory. We work with approximately physical quark masses
and, therefore, expect to find a crossover at small chemical potentials. To
define the pseudo-critical temperature in this case we use the susceptibility

χ =
∂
〈
ψ̄ψ
〉

∂m
(3)

and determine its maximum to find Tc. Again, the divergent terms in the
condensate only lead to an offset in χ, without changing its maximum. The
quark condensate in the chiral limit has been determined in Ref. [13], where
critical scaling beyond the mean field level at the second order chiral phase
transition has been studied.

In [14, 15, 16] the dressed Polyakov loop has been proposed as an order
parameter for centre symmetry breaking, i.e. confinement. This quantity is
defined by

Σ±1 =

2π∫
0

dϕ

2π
e∓iϕ

〈
ψ̄ψ
〉
ϕ
, (4)

where ϕ ∈ [0, 2π[ is a parameter for U(1)-valued boundary conditions of the
quark fields: ψ(~x, 1/T ) = eiϕψ(~x, 0). The physical boundary condition is
ϕ = π. The quantity Σ±1 contains all loops of connections winding once
around the Euclidean time direction in positive or negative direction. Among
these is the ordinary Polyakov loop together with all kinds of loops which
are not straight in the time direction but contain detours. At finite chemical
potential Σ+1 and Σ−1 are not equal and correspond to the dressed Polyakov
loop and its conjugate. Clearly, the dressed Polyakov loop can be determined
from the quark-DSE equipped with the generalized U(1)-valued boundary
conditions [8]. Since the deconfinement transition will be a crossover in full
QCD, we use the maximum of ∂Σ±1

∂m to define the pseudo-critical tempera-
ture, similar to the chiral transition.

3. Dyson–Schwinger equations

Fig. 1 displays the DSE for the quark propagator. The quark self-energy
depends on the dressed gluon propagator and the dressed quark-gluon vertex,
which are needed to solve the equation self-consistently.

For the dressed gluon propagator we use quenched and temperature de-
pendent lattice data as input into for the Yang–Mills part of the gluon DSE
and add the quark loop as depicted in Fig. 2. This approximation neglects
unquenching effects in the Yang–Mills part of the DSE which may affect
the transition temperatures on the 5–10 MeV level [10]. As an additional
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Fig. 1. The Dyson–Schwinger equation for the quark propagator. Dots denote
dressed objects.

approximation we treat the quark loop semi-perturbatively by taking bare
quarks but a dressed vertex. This allows us to use the hard-thermal loop
expression multiplied by the vertex dressing function. The HTL approxi-
mation is well justified above the critical temperature, where quark dressing
effects are small, but needs to be corrected in the chiral broken phase. A
calculation with a fully dressed quark loop is work in progress. Since there
are neither lattice nor DSE-results for the temperature dependent quark-
gluon vertex we rely on an ansatz, built along its Ward-identity, see [9, 10]
for details.

=
−1

+
−1

Fig. 2. The truncated gluon DSE. The black dot denotes the full, unquenched
propagator, while the grey dot denotes the quenched propagator.

4. Results

4.1. Quenched QCD

As already mentioned above, the phase transition of quenched QCD
(i.e. without the quark loop contributions in the Yang–Mills sector) can be
determined from the quark DSE using quenched lattice data for the tem-
perature dependent gluon propagator as input. Of course, the quality of
the results depends then on the statistic and systematic error of the lattice.
Starting from the pioneering work of Ref. [17], these have been improved
in [9] and analyzed in more detail in recent works [18,19,20,21]. In general,
however, it seems fair to say that, in particular, systematic errors due to
volume and discretization artifacts at small momenta are not yet well under
control. This is particularly true in the vicinity of the critical temperature.
Consequently, it proved difficult to distinguish the order of the phase tran-
sition between the two-color and three-color cases investigated in Ref. [9].
Here we present updated and improved results for the quark condensate and
the dressed Polyakov loop using the high-statistics lattice data of Ref. [21]
as input, which are also carried out on a much finer temperature grid than
the ones of [9].
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Fig. 3 shows how the dressed Polyakov loop and the quark condensate
change with temperature in the cases of two and three colors. For the nor-
malization of the temperature scale we use the transition temperatures which
have been determined from the Polyakov loop on the lattice and compare
with our results obtained from the quark DSE. Indeed, both order param-
eters show a rapid change at Tc, signaling the (approximate) restoration of
chiral symmetry and breaking of centre symmetry at the very same tempera-
ture in agreement with the critical temperature determined from the lattice.
With the finer temperature grid and the better statistics compared to [9],
the behavior of the dressed Polyakov loop is now clearly distinguishable be-
tween the SU(2) and SU(3) cases, pointing towards a second order phase
transition for SU(2) and a weak first order for SU(3), again in agreement
with the expectations. The situation is less clear for the chiral transition,
although also here we observe a steeper fall for the SU(3)-case. The behavior
of the quark condensate for temperatures below the critical one, i.e. the rise
with temperature combined with the sharp drop at Tc has also been seen
in quenched lattice calculations [22]. Nevertheless, it may very well be that
the quantitative aspects of this rise are subject to the systematic uncertain-
ties of the lattice gluon data [19]. These uncertainties are also reflected in
the ‘noisy’ behavior of the quark condensate. Nevertheless, it is remarkable
that below Tc the dressed Polyakov loop is consistent with zero, signaling
conserved centre symmetry.
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Fig. 3. Dressed Polyakov loop and quark condensate for SU(2) (left) and SU(3)
(right).

4.2. Unquenched QCD at finite temperature and chemical potential

We now include two flavors of quarks via the quark loop as explained
above. The effect of the matter sector on the gluon is a reduction of the
dressing functions, which leads to a reduced interaction strength in the quark
self-energy, and therefore to a smaller critical temperature. In Fig. 4 we
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show the evolution of the order parameters at µ = 0. What we find is a
crossover for both the condensate and the dressed Polyakov loop. The value
for the pseudo-critical temperature is TNf=2

c = 180± 5 MeV from the quark
condensate and TNf=2

c = 195± 5 MeV from the dressed Polyakov loop. The
difference in these numbers can be attributed to the crossover nature of the
transition.
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Fig. 4. Dressed Polyakov loop and quark condensate in two flavor QCD as function
of temperature at zero chemical potential.

When we go to µ > 0 the condensate for neither periodic (ϕ = 0) nor
anti-periodic (ϕ = π) boundary conditions becomes complex. This leads
to a difference in Σ+1 and Σ−1, i.e. in the dressed Polyakov loop and its
conjugate. In Fig. 5 the resulting phase diagram of two flavor QCD is
shown. For the chiral transition we observe a crossover up to relatively
large values of the chemical potential, where we find a critical endpoint
at (TEP, µEP) ≈ (95, 280) MeV. Since µEP/TEP ≈ 3 � 1, this result sug-
gests that the CEP is outside the reach of lattice QCD. For the confine-
ment/deconfinement transition we observe that the critical temperature ex-
tracted from the dressed Polyakov loop and its conjugate is nearly equal,
and close to that extracted from the quark condensate. As the chemical
potential is increased the crossover becomes steeper and the two transition
lines come closer together, meeting at around µ ≈ 200 MeV.

Both results, the CEP at large µ and the coinciding phase transitions
agree well with results from the PQM model [3] beyond mean field, where
the matter back-reaction on the Yang–Mills sector is also taken into account.

We should note here that at the chemical potentials, where we find the
CEP our truncation scheme becomes less reliable, since the influence of
baryons is neglected. It may, therefore, be advised to rephrase our results
as an exclusion of the CEP in the µ/T < 1 region. This is consistent with
longstanding predictions from investigations of the curvature of the chiral
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critical surface in the Columbia plot [23] and also with recent lattice results
on the curvature of the chiral and deconfinement crossover lines at small
chemical potential [24].
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Fig. 5. The phase boundary for chiral symmetry and confinement at real chemical
potential. The solid lines above the CEP denote the spinodals which mark the area
of coexistence of chiral symmetric and broken solutions of the DSE.

5. Conclusion

We have presented a truncation scheme for the Dyson–Schwinger equa-
tions of QCD, where we take data from a lattice calculation for the temper-
ature dependent quenched gluon, and introduce the quark loop for studies
of unquenched QCD, namely at finite chemical potential.

Within this truncation we investigated the behavior of the quark conden-
sate as an order parameter for chiral symmetry breaking, and of the dressed
Polyakov loop as an order parameter for confinement. In the quenched case
at µ = 0 we found that the order parameters reproduce the lattice input,
hinting at a second order phase transition for SU(2) and a first order phase
transition for SU(3). At finite density we found that thermal fluctuations
from the matter sector lead to a critical endpoint at large densities while
chiral and deconfinement transitions coincide. Our results serve as a basis
for further studies of hot and dense QCD.

We are grateful to Jens A. Mueller for collaboration on part of the results
summarized here. This work has been supported by the Helmholtz Young
Investigator Grant VH-NG-332 and the Helmholtz International Center for
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