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We propose an extended schematic model for hadrons in which quarks
as well as diquarks serve as building blocks. The outcome is a reclassifica-
tion of the hadron spectrum in which there are no radially excited hadrons:
all mesons and baryons previously believed to be radial excitations are or-
bitally excited states involving diquarks. Also, there are no exotic hadrons:
all hadrons previously believed to be exotic are states involving diquarks
and are an integral part of the model. We discuss the implications of this
result for a new understanding of confinement and its relation to asymp-
totic freedom, as well as its implications for a novel relation between the
size and energy of hadrons, whereby an excited hadron shrinks.
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1. Introduction

It is well-known that making reliable predictions about low-energy QCD
and hadrons is a great challenge, as perturbative methods of quantum field
theory do not apply at low energies, where the coupling constant is strong.
The common approach has been to propose various dynamical models which
are inspired by assumptions, ideas, and intuition borrowed from physical
systems, such as atomic physics and non-relativistic quantum mechanics,
which are not QCD.

Here1 we set out to study the hadron spectrum by employing purely
QCD ingredients and invoking the role of diquarks in the mix.

One well-established pillar of QCD is the quark model [2], which has
been the accepted framework for classifying the hadron spectrum. This
is a schematic model for the mesons and baryons in which quarks are the
∗ Talk presented at HIC for FAIR Workshop and XXVIII Max Born Symposium “Three
Days on Quarkyonic Island”, Wrocław, Poland, May 19–21, 2011.

1 This work is based on a more extensive manuscript, with many additional details and
references [1].
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building blocks for all the hadrons: mesons are bound states of a quark and
an antiquark (qq̄) and baryons are bound states of three quarks (qqq). In
addition to quarks, bound configurations of two quarks, known as diquarks,
may also be building blocks. The diquarks, explored already at the beginning
of the quark model in the 1960s having been introduced by Gell-Mann in [3],
were revisited following a surge of experimental and theoretical interest in
pentaquarks (qqqqq̄) [4]2. In particular, diquarks have been used as building
blocks in a systematic classification of all known baryons [6]. As to mesons,
a few mesons have been viewed as having diquarks as constituents — to
name just two examples, the light scalar mesons were interpreted as diquark–
antidiquark states [7], as were several charmed mesons [8]. But diquarks have
never been employed systematically as building blocks for the classification
of all known mesons.

We undertake this task. Our purpose is to find out whether the entire
meson spectrum can be re-classified with the aid of diquarks, and whether
we can learn anything new about QCD in the process.

In this spirit, we construct a new extended schematic model for mesons
in which certain diquark configurations, selected for us by the flavor struc-
ture of meson phenomenology, are building blocks for mesons in addition
to, and on equal footing with, the quarks of the traditional quark model.
These diquarks are the two flavor-antisymmetric ones. One of the two co-
incides with the most well-known “good” diquark which is antisymmetric in
all quantum numbers; the other has been previously unfairly neglected.

What follows is a reclassification of the meson spectrum into quark–
antiquark and diquark–antidiquark states and a reassignment of L and S
quantum numbers to the mesons. Thus, diquark–antidiquark states are nat-
urally integrated into the classification and no longer perceived as “exotic”.

In the classification process, a new notion of isorons (iso-hadrons)
emerges, along with their magic JPC quantum numbers. The isorons are
the natural analogs of isotopes or isotones in atomic or nuclear physics, and
their magic JPC quantum numbers are analogous to the magic numbers of
the nuclear shell model. In the nuclear shell model, it was spin–orbit cou-
plings which was the magic behind the magic numbers. Here, it remains
an open problem to understand what is behind the magic JPC of isorons.
It is striking that the magic JPC of isorons match the quantum numbers
predicted for low-lying glueballs by lattice QCD.

Most significantly, we find that there are no radially excited mesons:
no radial quantum number arises. In both the light and heavy quark sec-
tors, mesons that have been believed to be radially excited quark–antiquark

2 It was eventually found that the pentaquark Θ+ does not exist [5]; as R.L. Jaffe said
(Harvard seminar, 2004) “pentaquarks might come and go, but the diquarks are here
to stay”.



A New QCD Effect: the Shrinking Radius of Hadrons 697

states are orbitally excited diquark–antidiquark states. The same is true for
baryons: the baryons that have so far been considered to be radially excited
are orbitally excited configurations of two diquarks and an antiquark. All in
all, we are led to the conclusion that there are no radial excitations in the
hadron spectrum. In turn, this leads to inescapable, surprising, and signif-
icant implications regarding the dynamics of the strong force, confinement,
and asymptotic freedom. In particular, we uncover a new set of relations
between two fundamental properties of hadrons: their size and their energy.
These relations predict that hadrons shrink.

While our predictions may appear counterintuitive, they are completely
consistent with the known properties of QCD, such as confinement and
asymptotic freedom, and provide a novel explanation for the relation be-
tween them.

By now, our predictions have gotten experimental confirmation: two ex-
periments which observe shrinkage of hadrons have surfaced several months
after the papers [1] were posted to arXiv. In the first, a shrunk size of the
proton was observed [9]. While it was initially believed that the reason for
the unexpectedly small size came from QED, it was later realized [10] that
the shrunk size of the proton manifests properties of QCD, as predicted in
our papers [1]. The second experiment, carried out at HERMES, reported
shrinkage of the size of the ρ meson [11]. Suggestions for further experiments
appear in Sec. 5.

We emphasize that we have not imposed any form of interquark interac-
tion on our model. Instead, we make extensive use only of experimental data
together with the idea that quarks and diquarks serve as building blocks for
hadrons. This approach is fundamentally different from the one behind non-
relativistic QCD models which rely on an interquark potential. The results
are also fundamentally different.

2. Extended schematic model for mesons: diquark building
blocks and meson quantum numbers

Now we turn to meson phenomenology to determine what configurations
of two quarks can be considered as the diquark building blocks for mesons.
We note that all observed light meson multiplets are flavor nonets. No larger
flavor multiplets appear. Therefore, the SU(3)f flavor representation of the
diquark building blocks may not be larger than an antitriplet or else flavor
multiplets of mesons larger than nonets would be expected. Fortunately,
an antitriplet indeed appears in the flavor representation of a diquark (the
subcript f denotes flavor)

Q = qq : 3f ⊗ 3f = 6f ⊕ 3̄f . (1)
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So we require that a diquark be in 3̄f configuration, which is flavor antisym-
metric. Since quarks are fermions, a totally antisymmetric configuration is
needed, which leads to two possible diquark configurations: Q1 = (3̄f ,1s, 3̄c)
and Q2 = (3̄f ,3s,6c) (the subscript s denotes spin and c denotes color).
When we include heavy flavors, we continue to require antisymmetry in
flavor; the spin and color representations remain unchanged.

So now we have three building blocks for mesons: ordinary quarks q and
the diquarks Q1 and Q2. From these we construct meson states.

TABLE I

JPC quantum numbers for the three types of mesons, up to L = 2 (see [1] for full
table.

Table 1a: qq̄

L S JPC 2S+1LJ

0 0 0−+ 1S0

0 1 1−− 3S1

1 0 1+− 1P1

1 1 2++ 3P2

1++ 3P1

0++ 3P0

2 0 2−+ 1D2

2 1 3−− 3D3

2−− 3D2

1−− 3D1

Table 1b: Q1Q̄1

L S JPC 2S+1LJ

0 0 0++ 1S0

1 0 1−− 1P1

2 0 2++ 1D2

Table 1c: Q2Q̄2

L S JPC 2S+1LJ

0 0 0++ 1S0

0 1 1+− 3S1

0 2 2++ 5S2

1 0 1−− 1P1

1 1 2−+ 3P2

1−+ 3P1

0−+ 3P0

1 2 3−− 5P3

2−− 5P2

1−− 5P1

2 0 2++ 1D2

2 1 3+− 3D3

2+− 3D2

1+− 3D1

2 2 4++ 5D4

3++ 5D3

2++ 5D2

1++ 5D1

0++ 5D0

As usual, mesons must be color singlet bosons. By computing the suit-
able tensor products of the representations of the color group SU(3)c, we
find that the only color singlet combinations are qq̄, Q1Q̄1, and Q2Q̄2. It
remains to compute their JPC quantum numbers. For qq̄ these are well-
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known to be J = L⊗S, P = (−1)L+1, C = (−1)L+S . For Q1Q̄1 and Q2Q̄2,
J is as usual L⊗S, and a calculation analogous to the derivation of P and C
for qq̄ mesons yields3 P = (−1)L and C = (−1)L+S . Now all JPC quantum
numbers for all three types of mesons in this model may be computed in
terms of L and S. See Table I.

3. Reclassification of mesons

The next stage is to classify the known mesons based on this model.
The PDG contains all mesons observed in experiments, with measurements
of the meson’s mass, JPC, and decays4. We arrange the mesons in flavor
nonets of common JPC quantum numbers, and assign L and S quantum
numbers from Table I. The result is a classification of all mesons, both light
and heavy. See Table II.

We now discuss two central features of the classification5.
(1) Isorons and magic numbers. In most cases, there is a unique assign-

ment for each meson, but occasionally there are multiple mesons vying for
one available space in the table. In analogy with the concept of “isotopes”,
which denote multiple atoms with the same atomic number and proper-
ties but different mass, we name the multiple mesons “isorons”, short for
iso-hadrons. They appear in Table II c.

One can see immediately that there are certain JPC for which there is
an abundance of isorons. Those JPC are called “magic JPC” in analogy with
magic numbers of the nuclear shell model. Intriguingly, in the light meson
sector, the magic JPC exactly match the quantum numbers expected for
low-lying glueballs from lattice QCD [12].

(2) No radial excitation. A distinct feature of the classification is that
no radial quantum number arises: all mesons are reclassified as qq̄, Q1Q̄1, or
Q2Q̄2 with assigned L and S quantum numbers that are consistent with the
measured JPC. Mesons previously believed to be radially excited are one
of the following: Q1Q̄1 or Q2Q̄2 mesons with one unit of orbital excitation,
L = 1 (see the second light 0−+ nonet and the second light 1−− nonet, as
well as their heavier charm and bottom partners); qq̄ mesons with L = 2
(the ψ(3770) and the Υ (3S)); or Q2Q̄2 mesons with L = 3 (the ψ(4040) and
the Υ (4S))6.

3 Of course, the charge conjugation quantum number C is understood to apply only to
charge conjugation eigenstates.

4 Those mesons listed in the PDG under “further states” are not yet considered estab-
lished and we leave them out of the discussion.

5 Other features discussed in [1] involve expected new particles, mass hierarchies in
light nonets, binding energies of diquarks, decays of QiQ̄i mesons, interquark forces,
and Regge trajectories, are omitted here due to space constraints.

6 Note that the names Υ (nS) given to the bottomoniums are based on their previous
classification as S-waves with n units of radial excitation.
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TABLE II a

Classification of light mesons, up to J = 2 (see [1] for full table).

Light mesons

JPC constituents 2S+1LJ I = 1 I = 1
2

I = 0

0−+ qq̄ 1S0 •π •K • η • η′(958)

0−+ Q2Q̄2
3P0 •π(1300) K(1460) • η(1475) • η(1295)

0++ Q1Q̄1
1S0 •a0(980) κ(800) •f0(980) • f0(600)

0++ qq̄ 3P0 •a0(1450) •K∗0 (1430) •f0(1710) • f0(1370)

0++ Q2Q̄2
5D0 K∗0 (1950) f0(2100) • f0(2020)

1−− qq̄ 3S1 •ρ(770) •K∗(892) •φ(1020) • ω(782)

1−− Q1Q̄1
1P1 •ρ(1450) •K∗(1410) •φ(1680) • ω(1420)

1−− Q2Q̄2
5P1 ρ(1570)

1−− qq̄ 3D1 •ρ(1700) •K∗(1680) •ω(1650)

1−− Q2Q̄2
5F1 ρ(2150) φ(2170)

1−+ Q2Q̄2
3P1 •π1(1600) K(1630)

1++ qq̄ 3P1 •a1(1260) •K1(1400) •f1(1420) • f1(1285)

1++ Q2Q̄2
5D1 a1(1640) K1(1650) f1(1510)

1+− qq̄ 1P1 •b1(1235) •K1(1270) h1(1380) • h1(1170)

1+− Q2Q̄2
3D1 h1(1595)

2−+ Q2Q̄2
3P2 •π2(1670) K2(1580) η2(1870) • η2(1645)

2−+ qq̄ 1D2 •π2(1880)

2−+ Q2Q̄2
3F2 π2(2100) K2(2250)

2−− Q2Q̄2
5P2 •K2(1770)

2−− qq̄ 3D2 •K2(1820)

2++ qq̄ 3P2 •a2(1320) •K∗2 (1430) f2(1430) • f2(1270)

2++ Q2Q̄2
1D2 •f ′2(1525)

2++ Q1Q̄1
1D2 a2(1700) f2(1640) f2(1565)

2++ Q2Q̄2
5D2 f2(1810)

2++ qq̄ 3F2 K∗2 (1980) •f2(2010) • f2(1950)

For J ≥ 3 see [1].
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TABLE II b

Classification of heavy mesons.

Charmed mesons

JPC constituents 2S+1LJ I = 1◦ I = 1
2

I = 0 I = 0

0−+ qq̄ 1S0 •D •Ds •ηc(1S)

0−+ Q2Q̄2
3P0 •ηc(2S)

0++ Q1Q̄1
1S0 D∗0(2400) •D∗s0(2317) •χc0(1P )

0++ qq̄ 3P0 χb0(2P )

1−− qq̄ 3S1 •D∗ •D∗s •J/ψ(1S)

1−− Q1Q̄1
1P1 •ψ(2S)

1−− qq̄ 3D1 •ψ(3770)

1−− Q2Q̄2
5F1 •ψ(4040)

1++ qq̄ 3P1 D1(2420) •Ds1(2536) •χc1(1P )

1++ Q2Q̄2
5D1 •Ds1(2460) •X(3872)

2++ qq̄ 3P2 •D∗2(2460) •Ds2(2573)] •χc2(1P )

2++ Q1Q̄1
1D2 χc2(2P )

Bottom mesons

0−+ qq̄ 1S0 •B •Bs, Bc ηb(1S)

0++ Q1Q̄1
1S0 •χb0(1P )

0++ qq̄ 3P0 χb0(2P )

1−− qq̄ 3S1 •B∗ B∗s •Υ (1S)

1−− Q1Q̄1
1P1 •Υ (2S)

1−− qq̄ 3D1 •Υ (3S)

1−− Q2Q̄2
5F1 •Υ (4S)

1++ qq̄ 3P1 •B1(5721)0 •Bs1(5830)0 •χb1(1P )

1++ Q2Q̄2
5D1 •χb1(2P )

2++ qq̄ 3P2 •B∗2 (5747)0† •B∗s2(5840)† •χb2(1P )††

2++ Q1Q̄1
1D2 •χb2(2P )††
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TABLE II c

Isorons.

JPC Isorons

0−+ •η(1405) η(1760) • π(1800) K(1830) η(2225)

0++ •f0(1500) f0(2200) f0(2330)

1−− ρ(1900)
•ψ(4160) •X(4260) X(4360) • ψ(4415) Υ (10860) Υ (11020)

1−+ •π1(1400)

2++ f2(1910) f2(2150) • f2(2300) • f2(2340)

4++ f4(2300)

Although we have not discussed baryon reclassification in our extended
quark model, one can show [1,4] that in the baryon sector it is also the case
that there is no radial quantum number: all baryons previously believed
to be radially excited are reclassified as states involving diquarks, such as
Q1Q1q̄, with orbital, but no radial, excitations. Hence, the result about no
radial excitations in mesons extends to all hadrons.

One may now ask: can this result shed any new light on QCD? The
answer is an emphatic “yes”, and we discuss it in the following section.

Before we do so, we address the history that led to the current belief
that radial excitations of hadrons do exist.

One of the main sources for the concept that hadrons may be radially
excited goes back to potential models. According to these models, low-
energy QCD is described by a quark–quark potential V (r), where r is the
distance between the quarks. The potential in these models has two terms:
a short-distance term that is Coulomb-like (i.e., proportional to −1/r) and
analogous to the interaction between the proton and electron in the hydro-
gen atom, and a long-distance term Vconf(r) that increases with r and —
according to the models — describes confinement.

In these models, the spectrum for quark–antiquark bound states, i.e.
mesons, is obtained by solving the Schrödinger equation with the above po-
tential V (r). As with the hydrogen atom, or as with any central potential
in non-relativistic quantum mechanics, the resulting quantum numbers that
describe the spectrum include a principal or radial quantum number. Hence,
potential models automatically allow for, and in fact require, radial quantum
numbers and radial excitations. Another prominent set of models known as
strong decay models also includes radials. Yet the theoretical predictions
about radial excitations in hadrons have been known to encounter difficul-
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ties: data involving the masses of the candidates for radial excitations shows
that they are often significantly lighter than predicted by the models, and
data involving their decay modes often does not favor a radial assignment
either [13].

If we turn back to the original quark model, we find that a radial quantum
number was never part of this model, and the early versions of the PDG
reported the quantum numbers of mesons with the notation 2S+1LJ , that is,
spin and orbital quantum numbers only. It was only around 1980 that the
PDG added a radial quantum number, ultimately modifying its notation to
the atomic one, i.e. n2S+1LJ . The reason was that additional mesons were
detected that did not fit into the original quark model classification, and
this extra quantum number was introduced as a classification tool. There
was certainly no direct evidence that those additional mesons were radially
excited. In fact, some years later the PDG removed the radial classification
of two meson nonets because it was considered far fetched [14].

4. Implications

We now discuss the implications of our result, which we summarize as

The Law of the Hadronic Spectrum: There are no radial excita-
tions in low-energy QCD.

(1) The laws of ground state and excited hadrons. In order to understand
the implications of the above Law of the Hadronic Spectrum, we first recall
the properties of radial excitations in systems, where they do exist, such as
atomic physics. Recall that in a radially excited hydrogen atom, the average
distance between the proton and electron is larger than that distance in its
ground state. As the radial excitation quantum number nr increases, this
distance — which defines the radius of the atom — grows, until finally when
nr → ∞, the electron and proton are completely separated and the atom
has been ionized.

It is, therefore, clear that the absence of radial excitations in the hadron
spectrum is directly related to the prohibition on separation of the con-
stituents of a hadron, that is, it is directly related to quark confinement.
Since radial excitations are prohibited for hadrons, but other excitations —
such as orbital excitations — are allowed, it must follow that the distance
between the quarks in excited states cannot be larger than their distance
in the corresponding ground state, or else such excitations would have been
prohibited just as radial excitations are. Therefore, unlike the case for atoms,
we have:

The Law of Ground State Hadrons: The radius of a hadron is
largest when the hadron is in its ground state.
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When a hadron is excited, does its radius stay the same or become
smaller? While no radii of excited hadrons have ever been measured, four
measurements of ground-state radii are available (proton: .87 fm, Σ−: .78 fm,
π: .67 fm, K: .56 fm; their masses are .94 GeV, 1.2 GeV, .14 GeV, and
.49 GeV, respectively [5]7). From these one can see that in both the meson
and baryon sectors, a more massive hadron is smaller. Now, an orbitally
excited hadron has higher mass than a ground state hadron — it follows
roughly the Regge trajectory equation, where m2 ∝ L. Also, it is standard
to associate higher energies or large momenta with smaller distances. So we
have:

The Law of Shrinking Radii : The radius of a hadron decreases
when the hadron’s orbital excitation increases.

We may express the Law of Shrinking Radii in the following way:

∆R
∆L

< 0 , (2)

where R is the hadron’s radius.
This result may appear counter-intuitive, since it is well-known in quan-

tum physics, as well as in classical physics, that there is a centrifugal barrier
associated with orbital angular momentum. That is, an object with orbital
angular momentum tends to be larger. However, QCD and confinement have
always proved counter-intuitive. We may re-state the result by saying that
in hadrons, QCD overcomes the centrifugal barrier that would otherwise
occur in an orbitally excited object.

(2) Transition between confinement and asymptotic freedom. It is one of
the pillars of QCD that when quarks are at high energies and close to each
other, their interaction is very weak — this is the concept of asymptotic
freedom and antiscreening. Further, when quarks are at low energies and
far apart (around 1 fm), their interaction is strong and confining.

We have shown that a hadron is largest at its lowest energy state, and its
size decreases when it is orbitally excited. It follows that we can overcome
confinement and reach asymptotic freedom by increasing a hadron’s orbital
excitation. Eventually, its quarks will be so close to each other that they
become free and the hadron no longer exists.

Note that a set of hadrons, where each successive one has an additional
unit of L, is called a Regge trajectory. Therefore, what we have shown is
that the path from confinement to asymptotic freedom is a Regge trajectory.

7 Another ground state hadron, the ρ meson, arguably has a size similar to that of the
pion [15]. Lattice QCD calculations [16] also provide a radius for the ∆.
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So far, known Regge trajectories have at most 3 hadrons for baryons,
and 6 hadrons for mesons [1, 6]. This means either that further hadrons of
the trajectory have not yet been detected, or that they already do not exist
as hadrons because the energy is already high enough that we have reached
the regime of asymptotic freedom.

(3) The top quark is free. The top quark is the heaviest known quark and
it is the only quark that has been observed on its own, not as a constituent
of any hadron. It is standard to say that the top is so heavy that it decays
before it hadronizes [5, 17]. We propose a different interpretation: the top
quark is so heavy that its intrinsic energy is in the asymptotically free regime
where there is no confinement, and no hadrons. It is a free quark.

5. Further experimental tests

In addition to the experiments [9, 11] mentioned in the introduction, a
particularly direct test of the predictions proposed here about the size of
hadrons would be a measurement of the size of excited hadrons as compared
with a measurement of the size of their ground state. For example, one
may take several mesons of a given Regge trajectory such as π, b1(1235),
π2(1670) or a Regge trajectory of baryons such asN(939), N(1520), N(1680)
and measure their sizes. Such measurements have not yet been carried out
and may prove challenging experimentally due to the short lifetime of the
excited hadrons. However, extensive studies of N∗s have been carried out
at JLAB and may contain promising data [18].
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