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CHIRAL RESTORATION PHASE TRANSITION
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We overview a possible mechanism for confining but chirally symmetric
matter at low temperatures and large densities. As a new development, we
employ a diffused quark Fermi surface and show that such diffusion does
not destroy possible existence of a confining but chirally symmetric matter
at low temperatures and large density.
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1. Introduction

What happens with confinement and chiral symmetry dynamical break-
ing in the low temperature matter at large density, i.e., which phase will take
place just next to the liquid nuclear matter? It was a general belief in the
past that deconfinement and chiral restoration phase transitions (crossovers)
should coincide. A rationale for such an expectation was the view that the
hadron mass generation in the confining mode proceeds through the chiral
symmetry breaking in the vacuum and that the hadron mass is practically
completely due to the quark condensate of the vacuum. Consequently, be-
yond the chiral restoration line hadrons cannot exist and the QCD matter
should be in the plasma form.

In the vacuum we know from the ’t Hooft anomaly matching conditions
that indeed in the confining mode chiral symmetry must be realized in the
Nambu–Goldstone mode [1]. The essence of the argument is that in the vac-
uum the anomaly can be saturated only via the massless Goldstone particle
associated with the chiral symmetry dynamical breaking. However, in the
two-flavor baryonic medium the anomaly can be trivially saturated with the
baryon–baryon hole massless excitations and the existence of the massless
pion is a priori not required.

∗ Talk presented at HIC for FAIR Workshop and XXVIII Max Born Symposium “Three
Days on Quarkyonic Island”, Wrocław, Poland, May 19–21, 2011.

(717)



718 L.Ya. Glozman, V.K. Sazonov, R.F. Wagenbrunn

Another argument was that, according to Casher [2], chiral symmetry
breaking is required for quarks to be confined. Then, naively, hadrons with
nonzero mass cannot exist in a world with unbroken chiral symmetry. How-
ever, the Casher argument is not general and can be easily bypassed [3].
Recent lattice simulations have convincingly demonstrated that in the world
without the low-lying eigenmodes of the Dirac operator (i.e., with the ar-
tificially restored chiral symmetry) hadrons still exist and confinement per-
sists [4].

In the large Nc world, confinement survives in a cold matter up to arbi-
trary large density [5]. In this case nothing can screen the confining gluonic
field and gluodynamics is the same as in the vacuum. The allowed excitation
modes are of the color singlet nature and it is possible to define the quarky-
onic matter as a dense matter with confinement. Then a key question is at
which density and how could a dense cold matter be deconfined.

At T = 0 deconfinement could happen through the Debye screening of
the confining gluon field: A gluon creates the quark–quark hole pair that
again annihilates into a gluon. If this vacuum polarization diagram is finite,
then at some density confining gluons will be completely screened and the
deconfinement would appear. However, in the confining mode the energy
of the colored quark–quark hole pair is infinite. The allowed excitations in
the confining mode are the color singlet excitations like the baryon–baryon
hole pairs, etc. These excitation modes cannot screen the colored gluonic
confining field. In this sense, the T = 0 physics is very different from the
high temperature physics where deconfinement (screening) proceeds via the
incoherent thermal gluonic loops.

One could expect that the deconfinement in a dense medium should hap-
pen due to per-location of baryons. Such a reasoning is too naive, however,
as the per-location does not yet imply the screening of the confining gluonic
field.

Lattice simulations suggest that for theNc = 2 QCD at low temperatures
deconfinement happens at densities of the order of 50 times the nuclear
matter density [6]. Since the Nc = 3 world is just between two known cases
(Nc = 2; Nc = ∞), we expect that at Nc = 3 the deconfinement at low
temperatures happens at extremely large densities, much larger than can be
achieved in laboratories or in neutron stars.

By definition, the quarkyonic matter is a dense cold matter with confine-
ment. What happens with chiral symmetry breaking in a very dense cold
matter with confinement? Is it possible to have a chiral symmetry restora-
tion phase transition in a mode with confinement both below and above the
chiral phase transition?
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We cannot solve QCD at large density and the only way to address this
interesting question is to study such a possibility within a confining and
chirally symmetric model. Obviously, such model must provide dynamical
chiral symmetry breaking in the vacuum. The simplest possible model that
satisfies all requirements is the model of Ref. [7]. It is assumed within
the model that there is the linear instantaneous confining potential of the
Coulomb type. Such a potential is indeed observed in Coulomb gauge QCD
lattice simulations [8] or within the variational approach [9]. Then the chiral
symmetry breaking is obtained from the solution of the gap equation. Given
the quark Green function derived from the gap equation, one is able to solve
the Bethe–Salpeter equation for mesons or the corresponding equations for
baryons. An important aspect of this model is that it explicitly demonstrates
the effective restoration of chiral symmetry in hadrons with large angular
momenta [10,11]. This means that the mass generation mechanism in these
hadrons is not through the chiral condensate of the vacuum. Then, it is
clear, that there is a chance to obtain within this setup a chirally symmetric
but confining matter.

The latter question was addressed in Ref. [12]. Assuming a liquid phase,
i.e., that the translational and rotational symmetries are intact (as it is
in the nuclear matter), as well as a rigid quark Fermi surface in a dense
confining matter, one indeed obtains a chiral restoration phase transition
within the confining matter. However, if such a chirally symmetric confining
phase exists at low temperatures, relevant degrees of freedom near the Fermi
surface are baryons. Quarks interact inside baryons. Consequently, the
quark distribution function near the “Fermi surface” must be smooth. In this
paper, we report our findings for such a diffused quark “Fermi surface” [13].
Our main conclusion is that for any reasonable diffusion there always exists
such a critical “Fermi momentum” of quarks at which the chiral restoration
phase transition persists.

2. The model in a vacuum

We use the SU(2)L × SU(2)R × U(1)A × U(1)V symmetric Hamilto-
nian with the instantaneous linear Coulomb-like inter-quark potential. This
model was intensively used in the past to study chiral symmetry breaking,
chiral properties of hadrons, etc. [7]. The model can be considered as a
straightforward 3+1 dim generalization of the 1+1 dim ’t Hooft model [14].
An important aspect of this model is that at large spins J it exhibits the
effective restoration of chiral symmetry in hadrons, i.e., their mass is prac-
tically unrelated with the spontaneous breaking of chiral symmetry in the
vacuum [10,11].
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The self-energy of quarks

Σ (~p ) = Ap +
(
~γ~̂p

)
(Bp − p) (1)

consists of the Lorentz-scalar chiral symmetry breaking part Ap and the
chirally symmetric part (~γ~̂p )(Bp−p). The unknown functions Ap and Bp are
obtained from the gap equation. The functions Ap and Bp, as well as the self-
energy of a quark, contain an infrared divergence. Consequently, the single
quark energy is infinite. At the same time, this infrared divergence cancels
exactly in all possible color-singlet quantities, like the quark condensate,
hadron mass, etc., which is a manifestation of confinement. While the model
Hamiltonian is manifestly chirally symmetric (it does not contain any mass
term), the self-interaction of quarks produces chiral symmetry breaking via
the non-zero Lorentz-scalar self-energy Ap. This is how both confinement
and chiral symmetry breaking are guaranteed.

3. Effect of a dense medium at T = 0

It is practically impossible to solve exactly the model in a dense matter.
Indeed, that would imply to solve it first for a single baryon; then to obtain
a baryon–baryon interaction; given this interaction to construct a nuclear
matter and then slowly to increase its density. Obviously, it is a formidable
problem. In order to proceed and get some insight, one needs justifiable
simplifications.

In the large Nc limit, the nucleon is infinitely heavy, translational invari-
ance is broken and a many-nucleon system is certainly in a crystal phase.
Whether a (dense) nuclear matter will be a liquid or a crystal at Nc = 3 is
a subject to dynamical calculations. Such microscopical calculations cannot
be performed for any “realistic” model in 3+1 dimensions with confinement
and (broken) chiral symmetry. However, in the real world Nc = 3 we do
know that the nuclear matter is in a liquid phase; both translational and ro-
tational invariances are intact. We then assume a liquid phase with manifest
translational and rotational invariances in a dense quarkyonic matter.

We treat the system in the mean field approximation and assume first
a simple valence quark distribution function, like for the noninteracting
quarks, see Fig. 1. Given this quark distribution function we solve the gap
equation and at some critical Fermi momentum obtain the chiral restoration
phase transition, see Fig. 2.

In a dense matter at T = 0, the most important physics that leads to
restoration of chiral symmetry is the Pauli blocking by valence quarks of the
positive energy levels required for the very existence of the quark conden-
sate. This is similar to the chiral restoration in the Nambu and Jona-Lasinio
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Fig. 1. Valence quark distribution for a rigid quark Fermi surface.
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Fig. 2. Quark condensate in units of σ3/2 as a function of the Fermi momentum,
which is units of

√
σ.

model. At sufficiently large Fermi momentum the gap equation does not ad-
mit a nontrivial solution with broken chiral symmetry. Consequently, the
chiral symmetry breaking Lorentz-scalar part Ap of the quark self-energy
vanishes and the chiral symmetry gets restored. However, the chirally sym-
metric part of the quark self-energy does not vanish and is still infrared
divergent, like in the vacuum. This means that even with restored chiral
symmetry the single quark energy is infinite and the quark is confined. This
infrared divergence cancels exactly in all color singlet hadronic modes that
remain finite and well defined.

In this respect, the model is radically different from the non-confining
NJL model. In the latter a dense matter is a Fermi gas of free quarks. In
the Nambu–Goldstone mode these quarks are massive. In the Wigner–Weyl
mode they are massless. In our case, physical degrees of freedom that can
be excited are color singlet hadrons. In the Wigner–Weyl mode these are
the chirally symmetric hadrons.
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4. Diffusion of the quark Fermi surface

In reality, valence quarks near the Fermi surface interact and cluster
into the color singlet baryons. This interaction in general would lead to a
diffusion of the rigid Fermi surface for quarks. Some levels above the “Fermi
momentum” must be occupied with some probability as well as some levels
below the “Fermi momentum” with some probability must be empty.

In principle, the quark distribution function near the diffused Fermi sur-
face could be obtained self-consistently from the full solution of the problem.
It is a formidable task and such a program cannot be performed. With the
present state of the arts it is difficult to obtain a microscopic insight into the
dynamics of the diffusion. However, it is clear that the realistic distribution
function will be smooth, of the form in Fig. 3.

Fig. 3. Valence quark distribution for a diffused quark Fermi surface.

We parameterize a smooth valence quark distribution function by

ρv(p) = Θ (−p+ pf −∆) +Θ (p− pf +∆)
1

e(p−pf )/∆ + 1
(2)

and solve the gap equation for different pf and diffusion width ∆.
For each fixed diffusion width ∆ there always exists such critical “Fermi

momentum” at which the chiral restoration phase transition does take place.
This can be seen from Fig. 4, where a line of “critical Fermi momenta”
is depicted. The area above this critical line corresponds to the chirally
symmetric phase, while all points below the critical line represent a matter
with broken chiral symmetry.

This can be easily understood. At all momenta p� pf the Pauli blocking
in Fig. 3 is the same as for the rigid quark Fermi surface. At momenta just
below the pf the effect of the Pauli blocking is weaker than for the rigid
Fermi surface. However, this is compensated by additional Pauli blocking
of the levels that are just above the Fermi momentum for the rigid quark
distribution.

This does imply that in a sufficiently dense strongly interacting matter in
the confining mode, assuming that it is a liquid phase, the chiral restoration
does take place. The mass generation mechanism in such chirally symmetric
but confining liquid is not related to the chiral symmetry breaking.
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Fig. 4. Critical line that separates the quarkyonic matter with broken and restored
chiral symmetry.

Another explicit illustration of chiral symmetry of a dense matter above
the chiral restoration phase transition are properties of hadronic excitations.
In the Nambu–Goldstone mode of chiral symmetry there must be a massless
excitation mode that is associated with the massless pion. At the same time,
energies of all other mesons must be finite. In particular, there must be a
finite splitting of the excitations with quantum numbers I, JPC = 1, 0−+

and I, JPC = 0, 0++, that will be referred as the pion and the σ-meson,
respectively, according to the standard nomenclature. In contrast, these
excitations must be exactly degenerate in the Wigner–Weyl mode of chiral
symmetry and form the (1/2, 1/2)a representation of the SU(2)L × SU(2)R

chiral group.
To obtain the quark–antiquark bound states we solve the homogeneous

Bethe–Salpeter equation in the rest frame. In the Wigner–Weyl mode, i.e.,
when dynamical quark mass and chiral angle vanish, M(p) = 0; ϕp = 0, the
Bethe–Salpeter equations for the 1, 0−+ and 0, 0++ bound states become
identical and consequently energies of these states coincide.

In Fig. 5, we show masses of both pseudo-scalar and scalar modes for
different “Fermi momenta” pf and diffusion widths ∆. For each ∆ there
is a critical pcr

f (∆) at which the chiral restoration phase transition takes
place. Below this pcr

f (∆) there is a massless pion and a massive σ-meson.
Above the critical pf both the pion and the σ-meson are massive and exactly
degenerate.
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Fig. 5. Masses of the pseudoscalar (solid) and scalar (dashed) mesons in units of√
σ as functions of the “Fermi momentum” pf and of the diffusion width ∆ (in

units of
√
σ).

5. Conclusions

In the confining mode, the valence quarks interact and near the Fermi
surface cluster into the color singlet baryons. This implies that there cannot
be a rigid quark Fermi surface and the valence quark distribution function
near the Fermi surface must be smooth. Assuming a liquid phase, i.e., unbro-
ken translational and rotational invariances, we parameterize such diffused
“Fermi surface” by a simplest possible function and solve the corresponding
gap and Bethe–Salpeter equations. By this, we verify whether a chiral phase
transition, previously observed for a rigid quark Fermi surface, survives or
not. It turns out that for any reasonable diffusion width there always ex-
ists such a “Fermi momentum” that the chiral restoration phase transition
does take place. This reconfirms our previous conclusions about possible
existence of the confining but chirally symmetric phase. Below the phase
transition the elementary excitation modes of a matter are hadrons with
broken chiral symmetry, while above the phase transition such excitations
are chirally symmetric hadrons.
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