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We discuss universal properties of higher order cumulants of net baryon
number fluctuations and point out their relevance for the analysis of freeze-
out and critical conditions in heavy ion collisions at LHC and RHIC. We
focus on a discussion of universal properties of sixth order cumulants and
compare with calculations performed in the Polyakov loop extended Quark
Meson model.

DOI:10.5506/APhysPolBSupp.5.747
PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Mh, 25.75.–q

1. Introduction

Higher order cumulants, of conserved charges are considered to be central
observables in the search for the critical point that has been suggested to ex-
ist in the QCD phase diagram at some non-zero value of the baryon chemical
potential [1]. The search for this critical point is one of the main motivations
for the ongoing low energy runs at RHIC. First results on net baryon num-
ber fluctuations and their cumulants up to fourth order have been reported
recently by the STAR Collaboration [2]. It has been pointed out that these
experimental findings are in reasonable agreement with hadron resonance
gas (HRG) model calculations [3]. Although small discrepancies between
experimental results and HRG model calculations have been found when
analyzing in more detail the shape of net proton number distributions [4],
this may raise the question whether the thermal conditions at freeze-out are
sensitive to critical behavior or not.
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Thermal properties of higher order cumulants of conserved charge fluc-
tuations can also be analyzed in equilibrium thermodynamics of QCD, e.g.
by performing lattice QCD calculations. The early calculations of net quark
number fluctuations [5,6,7] and their extension to fluctuations of conserved
charges [8], although performed on rather coarse lattices, demonstrated quite
convincingly that ratios of cumulants of baryon number, electric charge or
strangeness fluctuations, are quite sensitive probes for detecting critical be-
havior in QCD. They are sensitive to universal scaling properties at van-
ishing as well as non-vanishing baryon chemical potential (µB) and directly
reflect the internal degrees of freedom that carry the corresponding conserved
charge [7,9] in a thermal medium. Ratios of cumulants of conserved charges
change rapidly in the crossover region corresponding to the chiral transition
in QCD and reflect the change from hadronic to partonic degrees of free-
dom [10]. Higher order cumulants become increasingly sensitive to critical
behavior as they are obtained from high order derivatives of the QCD par-
tition function and thus enhance singular contributions over regular terms
in the partition function. Scaling properties of higher order cumulants that
can be deduced from critical behavior of strongly interacting matter as it is
described by QCD are, of course, quite different from predictions based on
HRG model calculations, which are insensitive to any form of critical be-
havior. If freeze-out happens close to any critical point or line in the QCD
phase diagram, one thus should expect to observe deviations from HRG
model results that show up more prominently in higher order cumulants.

In this paper, we focus on a discussion of the structure of sixth order
cumulants of the fluctuations of net baryon number. After a discussion of the
QCD phase diagram in the next section we turn to a discussion of universal
properties of higher order cumulants in Sec. 3. In Sec. 4 we discuss how these
general universal properties show up in QCD motivated model calculations.
We conclude in Sec. 5.

2. The chiral phase transition, crossover and freeze-out

In the limit of vanishing light quark masses, strongly interacting mat-
ter, as described by QCD, will undergo a thermal phase transition at a
critical temperature Tc. In QCD with 2 massless (u, d) quarks the chiral
SU(2)L × SU(2)R symmetry, which is isomorphic to O(4), gets restored at
this temperature. If the breaking of the axial U(1)A symmetry of QCD does
not get strongly reduced at the same time and its breaking thus remains
‘substantial’, the transition will be second order, belonging to the universal-
ity class of 3-dimensional O(4) symmetric spin models [11]. Recent studies
of scaling properties of the chiral condensate support this scenario [12] and
also suggest [13] that the chiral phase transition stays second order for small,
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but non-zero values of the baryon chemical potential (µB). As this second
order phase transition line does not seem to reach zero temperature at a
finite value of µB, it is expected to either end in a tri-critical point at tem-
perature Ttri and baryon chemical potential µtri [1] (see Fig. 1), or continue
to persist up to infinite temperature.
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Fig. 1. Phase diagram of QCD in the space of temperature, baryon chemical po-
tential and light quark mass (left) and the freeze-out line determined from a com-
parison of ratios of particle yields measured at RHIC and hadron resonance gas
model calculations (right). Also shown in the right-hand figure are results for the
crossover transition line, calculated in lattice QCD to leading order in the square
of the baryon chemical potential [13].

For any non-zero value of the light quark masses, however, the chiral
phase transition will only be a crossover transition, characterized by pseudo-
critical temperatures Tpc(µB), which reduce to the critical temperature in
the chiral limit. In the vicinity of Tpc(µB) thermodynamic observables,
obtained as derivatives of the free energy, will show universal scaling behavior
for small but non-zero values of the light quark masses. Whether the regime
of physical light quark mass values is close enough to the chiral limit so that
bulk thermodynamic observables remain sensitive to these universal scaling
properties is an important question to clarify. Current lattice studies of
the quark mass dependence of scaling relations at µB = 0 suggest that this
is the case [12]. It thus seems that at least at vanishing baryon chemical
potential studies of thermal properties of the QCD medium with its physical
quark masses should be sensitive to the existence of a phase transition in
the massless (chiral) limit of QCD1.

1 We note, however, that current lattice studies of universal scaling properties have
been performed on rather coarse lattices and need to be verified through calculations
on finer lattices.
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Another line in the QCD phase diagram, the chemical freeze-out line
Tf(µB), is well established experimentally. It is characterized by values of
the temperature and baryon chemical potential at which hadrons start to
form in the expanding dense medium generated in a heavy ion collision.
The parametrization of this line has been obtained by comparing ratios of
different hadron yields with calculations in a HRG model [14]. Empirically,
one finds that for small values of the chemical potential the freeze-out tem-
perature Tf and estimates for the pseudo-critical temperatures Tpc in QCD
with physical light quark masses are quite close to each other. However,
differences between these temperatures as well as the chiral phase transition
temperature Tc(µB) seem to increase with increasing values of µB. A cal-
culation of the latter, using universal scaling properties of the chiral order
parameter yields a curvature of the phase transition line [13], that is sig-
nificantly smaller than the curvature of the freeze-out line obtained from a
parametrization of experimental data [14] (see Fig. 1 (right)). It thus seems
that with increasing baryon chemical potential freeze-out in heavy ion col-
lisions happens further away from the QCD chiral critical line in the QCD
phase diagram as well as from the crossover line that characterizes the QCD
transition at physical values of the quark masses. Nonetheless, the hope is
that Tf(µB) stays close enough to the (not yet established) QCD critical
point at Tcp (see Fig. 1 (left)) so that experimental studies of hadron prop-
erties at the time of freeze-out remain sensitive to critical behavior in the
vicinity of this second order phase transition point.

Critical behavior goes along with large fluctuations, i.e., large correlation
lengths, of thermodynamic response functions that couple to the relevant
thermal control parameters (T, µB). As far as studies of critical behavior
with observables sensitive to equilibrium thermodynamics at Tf is concerned,
the situation in the vicinity of the QCD critical point at (Tcp, µcp) as well
as the chiral phase transition at Tc(µB = 0) (shaded areas in Fig. 1) is
very similar. Experimentally, one tests whether freeze-out happens close
to a critical point by checking whether scaling properties that leave their
imprint in the non-analytic structure of certain thermodynamic observables
are detectable at the time of chemical freeze-out. The basic tool to do so is
the analysis of event-by-event fluctuations [15].

As indicated above, a comparison of experimental results on the freeze-
out line and lattice QCD results on the chiral phase transition line suggests
that evidence for critical behavior may more easily be established in studies
of higher order cumulants close to or at vanishing µB than at larger values
of µB. The analysis of higher order cumulants now performed in lattice cal-
culations at vanishing baryon chemical potential thus are of direct relevance
for studies at the LHC as well as the highest beam energies at RHIC, where
leading order corrections in µB/T , that can be introduced using Taylor ex-
pansions, are still small [16, 17].
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3. Universal properties of higher order cumulants

Close to the chiral limit and at temperatures near the chiral phase tran-
sition temperature Tc, higher order derivatives of the free energy density (f)
with respect to temperature or chemical potential are increasingly sensitive
to the non-analytic (singular) contribution to the free energy density. The
free energy density may be represented in terms of singular (fs) and regular
(fr) contributions

f(T, µq,mq) = fs(T, µq,mq) + fr(T, µq,mq) . (1)

In addition to the dependence on temperature T , we also introduced here
an explicit dependence on the light quark chemical potential, µq = µB/3.
In the vicinity of any point (Tc, µc) on the chiral phase transition line the
singular part of the free energy may be written as

fs(T, µq, h)
T 4

= Ah1+1/δff (z) , z ≡ t

h1/βδ
, (2)

where β and δ are critical exponents of the 3-dimensional O(4) spin model [18]
and

t ≡ 1
t0

(
T − Tc

Tc
+ κq

((µq
T

)2
−
(
µc

Tc

)2
))

, h ≡ 1
h0

mq

Tc
(3)

with non-universal scale parameters t0, h0. We also suppressed any possible
dependence of the non-universal parameters Tc, t0, h0, κ on µc.

The net baryon number fluctuations and the corresponding cumulants
are obtained from Eq. (1) by taking derivatives with respect to µ̂q = µq/T

χBn = −∂
nf/T 4

∂µ̂nB
. (4)

From Eq. (2) it is apparent that, in the vicinity of the critical tem-
perature, the susceptibilities χBn show a strong dependence on the explicit
symmetry breaking term, the quark mass

χBn ∼

{
−(2κq)n/2h(2−α−n/2)/βδf

(n/2)
f (z) , for µc/T = 0 , and n even

−(2κq)n
(µc

T

)n
h(2−α−n)/βδf

(n)
f (z) , for µq/T > 0 ,

(5)
where the critical exponent α is related to β, δ through a hyper-scaling
relation 2− α = βδ(1 + 1/δ). As α < 0 for the 3d, O(N) universality class,
the first cumulants that diverge in the chiral limit are χB6 at µc/T = 0 or χB3
at µc/T > 0. The behavior of both susceptibilities is controlled by the same
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universal scaling function f (3)
f (z). Relative to the strength of the singularity

at µc/T = 0 the amplitude of the singular term contributing to χB3 , however,
is suppressed by a factor (µc/T )3.

The universal scaling function ff (z), which characterizes the singular be-
havior of models in the universality class of 3-dimensional, O(4) symmetric
models, and its derivatives have been analyzed recently [18]. We show in
Fig. 2 (left) the third derivative of ff (z) and the resulting scaling behavior
of the singular part of the 6th order cumulant of net baryon number fluctua-
tions (Fig. 2 (right)). We note that χB6 diverges to ±∞ when approaching Tc

from below/above. This reflects the behavior of f (3)
f (z) in the limit z → ±∞.

In the chiral limit one obtains for µB/T = 0

χB6 ∼ −(2κq)3
∣∣∣∣T − Tc

Tc

∣∣∣∣−1−α
f

(3)
± , (6)

where f (3)
± = lim

z→±∞
|z|1+αf

(3)
f (z). The behavior of the universal scaling func-

tions f (3)(z) for large |z| thus controls the change of sign in χB6 in the vicinity
of t ' 0. Whether such a change of sign indeed occurs in QCD and, if so,
where exactly this change of sign occurs at non-zero values of the quark mass
(non-zero h), depends on the relative magnitude of the regular and singular
contributions to the free energy. This also controls the ratio of maximal and
minimal value of χB6 . In fact, in the chiral limit this ratio is a universal
number and deviations from it can be used to quantify the influence of reg-
ular terms relative to the singular contributions. As can be seen in Fig. 2,
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Fig. 2. The third derivative of the scaling function controlling the singular part of
the free energy [18] in theories belonging to the 3d, O(4) universality class (left)
and its contribution to third or higher order cumulants (see Eq. (2)) (right) [19].
Here h0 and z0 = h

1/βδ
0 /t0 are non-universal scale parameters.
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the maximum and minimum of χB6 both diverge in the chiral limit. The
maximum at Tmax < Tc is substantially shallower than the deep minimum
at Tmin > Tc. In the chiral limit, the ratio of the cumulant χB6 at these two
extrema takes on a universal value,

lim
h→0

χB6 (Tmin)
χB6 (Tmax)

' −6.7 . (7)

4. A comparison with model calculations

The generic structure deduced from the universal O(4) scaling of cumu-
lants indeed is seen in the calculation of higher order cumulants in lattice
QCD [8] as well as in model calculations [19]. We show in Fig. 3 results from
an analysis performed in the Polyakov loop extended quark meson (PQM)
model. Figure 3 (left) shows results for χB6 at µB = 0. The expected change
in sign is clearly visible, indicating that the singular contributions at the
physical value of the pion mass indeed dominate over the regular terms, al-
though the ratio of minimal to maximal value of χB6 is only about −1.5, i.e.
it is about a factor four smaller than the universal asymptotic value given
in Eq. (7).
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Fig. 3. The sixth order cumulant of net baryon number fluctuations calculated
in the PQM model at µB/T = 0 (left) and the region in which this cumulant is
negative for µB/T ≥ 0 (right). The solid line indicates the location of the minimum
in χB6 /χB2 and the dashed line gives the crossover transition line determined from
the maximum in the chiral susceptibility.

In Fig. 3 (right) we show the region in the T −µ plane in which χB6 stays
negative for µB > 0. For small values of µB/T this regime extends to infinite
temperature, reflecting the structure of χB6 at µB = 0. For larger µB/T ,
however, this regime is restricted to a narrow band in the vicinity of the
crossover temperature. This too can be understood in terms of contributions
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from the singular part of the free energy. In sub-leading order χB6 receives
contributions from χB8 that are proportional to (µB/T )2. The eighth order
cumulant is more singular than χB6 and approaches +∞ for T → T+

c . Also
at non-zero values of the quark mass (h) this contribution thus is expected to
dominate for sufficiently large µB/T . This makes the region, in which χB6 can
be negative, shrink to a small interval around the crossover transition line.
The structure of χB8 is illustrated in Fig. 4. It is apparent that χB8 calculated
in the PQMmodel (left) resembles closely the structure expected to be found
from the singular part of 3d, O(4) symmetric models. In particular, we note
that the ratio of the minimal value of χB8 to the maximum on the high
temperature side is quite similar to the universal value expected from an
analysis of the corresponding extrema of the O(4) scaling function shown
in Fig. 4 (right). This suggests that the regular contributions are indeed
negligible in high order cumulants.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-5 -4 -3 -2 -1  0  1  2  3  4  5

-(
h

0
h
)−

(2
+

α
)/

β
δ
 f

f(4
) (z

)

z0(T-Tc)/Tc

h0h=1.0
0.5

0.25
0.15
0.0

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-5 -4 -3 -2 -1  0  1  2  3  4  5

-(
h

0
h
)−

(2
+

α
)/

β
δ
 f

f(4
) (z

)

z0(T-Tc)/Tc

h0h=1.0
0.5

0.25
0.15

0.0

Fig. 4. The eighth order cumulant of net baryon number fluctuations calculated
in the PQM model at µB/T = 0 (right) and universal scaling of this cumulant
obtained from an analysis of 3d, O(4) symmetric spin models (left).

5. Conclusions

We have discussed the general structure of higher order cumulants of
net baryon number fluctuations resulting from universal scaling properties
of these cumulants that dominate their behavior in the chiral limit. We
discussed in detail the structure of the sixth order cumulant at zero and non-
zero values of the baryon chemical potential and showed how the appearance
of a region of negative χB6 and its structure can be understood in terms of
universal scaling properties in the vicinity of a chiral phase transition line.
A similar discussion can also be given for lower order cumulants, e.g. χB3
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or χB4 . They are finite at µB/T = 0, but will receive singular contributions
from f

(n)
f (z), n ≥ 3, at µB/T > 0. This too will lead to regions of negative

cumulants in the vicinity of the crossover temperature.
We have shown that these properties are robust features of cumulants

that also manifest themselves in model calculations, although at physical
values of the pion mass they are influenced by non-singular, non-universal
contributions. Whether these features of higher order cumulants become
detectable in heavy ion experiments crucially depends on the location of
the freeze-out temperature in the QCD phase diagram in comparison to the
chiral crossover line.
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