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Large neutron star masses as the recently measured 1.97 ± 0.04M�
for PSR J1614-2230 provide a valuable lower limit on the stiffness of the
equation of state of dense, nuclear and quark matter. Complementary, the
analysis of the elliptic flow in heavy ion collisions suggests an upper limit
on the EoS stiffness. We illustrate how this dichotomy permits to constrain
parameters of effective EoS models which otherwise could not be derived
unambiguously from first principles.
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1. Introduction

Neutron stars (NS) which outrange the domain of ‘typical’ NS masses
(very roughly between 1.2 and 1.6M�, see Fig. 1 in [1] for an overview)
have been considered to provide a serious constraint on the stiffness of the
equation of state (EoS) [2] but treated rather cautiously due to the fact
that in the rare cases of very massive observed NS either the accuracy of
the measurement has been worryingly low or/and the measurement itself
raised doubts within the community [3]. It seems that this situation has
changed after a mass of M = 1.97 ± 0.04M� has been reported for PSR
J1614-2230 with an unprecedented accuracy in this high mass regime [4]
and without perceivable objections from expert groups involved in this field.
This observation of a two solar mass NS provides a very direct constraint on
the minimum stiffness of the EoS of cold and dense matter and, therefore,
promises new insights regarding our understanding in particular of the nature
of particle interactions at finite densities. Implications have been discussed
shortly after the measurement became public [1].
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As an example (which deserves more attention than can be granted in
this article) for the importance of this result, it is worth to mention the
problem of strangeness for the hadronic EoS. Even though we are rather
interested in the possible existence of a quark matter (QM) core in NS one
cannot exclude the possibility that before the according critical density can
be reached, the mass-density threshold for hyperons is passed and the EoS
has to soften due to the appearance of these additional degrees of freedom.
Due to this softening, the maximummass of a corresponding NS can decrease
drastically in comparison to the plain EoS with only neutron and proton
degrees of freedom and is, therefore, not unlikely to contradict the high NS
mass constraint. The problem can be avoided by accounting for repulsive
vector interaction terms which are a specific feature of relativistic approaches
to EoS. This has been shown, e.g., in a generalized nonlinear Walecka-type
model [5, 6] and a quark-meson-coupling model [7, 8]. Similarly, it turns
out that vector interaction terms are of crucial importance if aiming at the
description of high mass NS with QM cores [9]. It is an interesting finding
that merely by the observation of a two solar mass NS the vector interaction
can be identified as an inevitable channel if approaching a microscopical
description of both, dense hyperon and QM.

Besides a two solar mass constraint limiting the ‘softness’ of the EoS, we
suggested several other constraints from NS observations and the analysis
of heavy ion collisions which have to be fulfilled simultaneously by a viable
state-of-the-art EoS [2]. In detail, the scheme suggests that a viable EoS
should:

• reproduce the most massive observed neutron star,
• avoid the direct URCA (DU) cooling problem,
• result in neutron stars within the predicted mass-radius domains of

4U 0614+09 (deduced from quasiperiodic brightness oscillations) and
RX J1856-3754 (deduced from the objects thermal emission),
• explain the gravitational mass and total baryon number of pulsar PSR

J0737-3039(B) with at most 1% deviation from the baryon number
predicted for this particular object, and
• not contradict flow and kaon production data of heavy-ion collisions.

At the time of publication of Ref. [2], the most massive NS has been PSR
J0751+1807 withM ∼ 2.1M�, a result which later has been withdrawn [10].
We reasoned that, in particular, the flow constraint is an extremely useful
constraint. In contrast to the two solar mass constraint it limits the EoS
such, that it cannot exceed the upper limits on the pressure (as a function
of density) in symmetric matter as obtained from the analysis of the ellip-
tic flow of iso-symmetric matter in HIC [11]. This gives two complement-
ing phenomenological constraints on the EoS stiffness, an upper (flow) and
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a lower (two solar mass constraint) limit, which both considered together
significantly reduce the possible shape of the pressure density relation, viz.,
the EoS at super saturation densities. In previous work, we took advan-
tage of this insight and adjusted otherwise not well determined coupling
constants of a Nambu–Jona-Lasinio (NJL) type model. Details about these
models framework is found in the original work formulated before the in-
vention of the quark model of elementary particles [12, 13] and a number
of review articles [14, 15, 16, 17, 18] applying it to elucidate the role of dy-
namical chiral symmetry breaking for hadron structure and its restoration
in dense quark matter. Our resulting hybrid, nuclear-quark matter EoS, is
in agreement with both of these before mentioned constraints and shows a
better overall performance than the originally underlying nuclear EoS based
on the Dirac–Bruckner Hartree–Fock (DBHF) approach [9], which will be
shortly summarized later in this paper. At this time we had to scan a small
parameter range only in order to obtain this result. However, the ques-
tion how well the QM model EoS is constrained, viz. which other sets of
coupling constants would reproduce a phenomenologically sound EoS, has
been left open in [9]. The reporting of PSR J1614’s high mass has triggered
this kind of more systematic studies for Bag-like QM EoS within a purely
phenomenological model for the QM equation of state consisting simply of
a power series expansion in the quark chemical potential µ including 4th
and 2nd order terms [19, 20]. The 4th-order term is thought to mimic the
influence of strong interactions on the ideal gas expression for the quark
pressure, while the 2nd order term is a measure for the competing effects
of a finite strange quark mass and a possible diquark condensate in decon-
fined matter [21]. It is worth to notice that a µ4-term is not necessarily the
leading order term in a µ-expansion of the pressure, as has been shown for a
simple, semi-analytic model based on Dyson–Schwinger techniques at finite
densities [22]. We would like to mention a very promising, recent develop-
ment in modeling quark matter in the nonperturbative, low-energy domain
of QCD which is relevant for the QCD phase diagram and compact star
phenomenology. This concerns nonlocal, separable interaction models with
either covariant or instantaneous formfactors [23, 24, 25] and their applica-
tion to compact stars [26,27] generalizing the local current–current coupling
of the NJL model. In particular, the rank-2 separable models which allow a
simultaneous description of the dynamical quark mass functionm(p) and the
wave function renormalization Z(p) of the quark propagator in accordance
with lattice QCD data [28,29,30,31] shall allow to greatly reduce ambiguities
of the parametrization of quark models discussed in these proceedings. For
the time being, however, the nonlocal models need to be further improved
to address diquark condensation and asymmetric matter before they can be
used to study compact star constraints.
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In this paper, we will illustrate in a systematic, ‘whole-range’ scan of
an NJL model EoS for QM how strongly a two-solar NS mass measurement
constrains the strength of available (vector and diquark) coupling strength
parameters and what implications can be derived for the investigation of
HIC, viz. the EoS of iso-spin symmetric matter. Section 2 gives a summary
of the applied QM EoS, Sec. 3 discusses the result of our analysis, Sec. 4
will provide conclusions and a brief outlook concerning further interesting
questions.

2. Hybrid matter EoS based on a NJL model

In order to obtain a QM equation of state, we employ a three-flavor color
superconducting NJL model with selfconsistently determined quark masses
and diquark gaps [32, 33, 34]. In addition to a typical scalar interaction
term, we account for a repulsive vector interaction term which stiffens the
EoS with increasing interaction strength and results in sufficiently high NS
masses (details are found in [9] and references therein). The attractive scalar
diquark channels are responsible for the formation of diquark condensates
and color superconducting phases in the system. As we discussed before, it
moreover lowers the transition density to a nuclear matter EoS with increas-
ing coupling strength [9]. The effective Lagrangian can be split into a free
particle and an interaction part. The free part reads as

Lkin = q̄ (−iγµ∂µ + m̂+ µ̂) q , (1)

where m̂ = diag(mu,md,ms) is the diagonal current quark mass matrix
and µ̂ the corresponding quark chemical potential matrix. The effective
interaction is written as

Lint = GSηD

∑
a,b=2,5,7

(
q̄iγ5τaλbCq̄

T
) (
qTCiγ5τaλaq

)
+GS

8∑
a=0

[
(q̄τaq)2 + ηV(q̄iγ0q)2

]
. (2)

τa and λa are Gell-Mann matrices in flavor and color space respectively, and
C the charge conjugation matrix. Here we have omitted interaction channels
which do not contribute to the thermodynamics at meanfield level, like the
pseudosclar isovector channel which would be required to make the chiral
symmetry of this interaction model manifest. The parameter GS defines the
scalar coupling strength and can be determined from meson properties in the
vacuum. For this study, we apply the parameters obtained for a sharp cut-
off regularization scheme from Table III of Ref. [35] labeled with ‘∞’ in front
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of the corresponding table row1. The parameters ηD(ηV) are defined as the
ratio of the diquark(vector) and scalar coupling. Since these two parameters
are not fixed by vacuum properties of mesons or hadrons we treat them as
free model parameters. In order to investigate thermodynamical properties
of the system, we use the partition function in path integral representation

Z(T, µ̂) =
∫
Dq̄Dq exp


β∫

0

dτ

∫
d3x

[
q̄
(
i/∂ − m̂+ µ̂γ0

)
q + Lint

] . (3)

Bosonic meson field degrees of freedom can easily be introduced by apply-
ing corresponding Hubbard–Stratonovich transformations in all interaction
channels. For the sake of simplicity, all of them are treated on the mean-
field level, viz., mesonic fluctuations and higher correlations are neglected.
Minimizing the thermodynamical potential Ω = −T lnZ with respect to the
meanfields then defines the pressure p = −Ω of the equilibrated system. As
a result of the minimization procedure one obtains a set of coupled gap equa-
tions which has to be solved selfconsistently. Finally, the thermodynamical
potential reads as

Ω(T, µ) =
φ2
u + φ2

d + φ2
s

8GS
−
ω2
u + ω2

d + ω2
s

8GV
+
∆2
ud +∆2

us +∆2
ds

4GD

−
∫

d3p

(2π)3

18∑
n=1

[
En + 2T ln

(
1 + e−En/T

)]
+Ωl −Ω0 . (4)

Ωl denotes the contribution of electrons and muons to the thermodynamic
potential, Ω0 is the contribution to be subtracted in order to obtain zero
vacuum pressure. The φf (with f = u, d, s) are the chiral condensates
corresponding to the three quark flavors which are obtained from the previ-
ously described minimization of the scalar meanfield terms. Accordingly, one
has to account for the vector meanfields ωf and pairing gaps ∆ff ′ . Under
neutron star conditions, one additionally imposes electric charge neutrality
and β-equilibrium conditions. In this paper, we disregard the Kobayashi–
Maskawa–’t Hooft term in the interaction Lagrangian, see Ref. [33] for a
motivation. Further references and possible consequences arising from the
inclusion of this term are discussed in [36,37].

With Eq. (4) we have a QM EoS available which is still, by construction,
phenomenological but allows to interpret the influence of certain interaction
channels on the EoS more specifically than generalized power expansions of

1 This parametrization scheme has been implemented in an online tool developed by
F. Sandin which also corrects for a mistake in the kaon mass formula employed in
[35], see http://3fcs.pendicular.net/psolver
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ideal gas expressions. The next step, in order to describe NS phenomenology,
is to account for confined nuclear matter at lower densities. Without a
unified in-medium-approach for the description of nuclear matter in terms
of QM degrees of freedom at hand we, as everybody else, fall back to a two-
phase description, joining independently obtained nuclear and QM EoS by
performing a phase transition construction. As common as this procedure
is, we feel a few comments have to be made about it in order to avoid a
misleading interpretation of this work. Our understanding of the nuclear
EoS at supersaturation densities is by no means more profound than our
knowledge about dense QM. The set of constraints we apply in order to
pin down the QM EoS we originally bundled up in order to constrain the
nuclear EoS. There are no profound additional insights into the shape of the
‘true’ nuclear matter EoS since the publication of [2]. even though progress
has been made in order to gain deeper insights into the physics of finite
density nuclear systems, e.g., within the framework of chiral effective field
theory [38] and directly from QCD via lattice simulations [39]. While these
studies are progressing and may become applicable to high density nuclear
systems in compact stars and heavy-ion collisions in future, we discuss these
systems for the time being from the point of view of parametric approaches
to the high density EoS. Such cold dense EoS studies may be guided by
observations of compact stars, see [2, 40, 41]. From this parametric point
of view the variation of model parameters of a QM EoS in a strict sense
would always require to perform a similar variation of an independently
obtained NM EoS. All results of this (or any similar) analysis, are likely to
change significantly if the NM EoS is exchanged by a model with significantly
different high density behavior. As an example, softening the NM EoS to a
degree, where the model is not any longer in agreement with the two-solar
mass, constraint requires to soften the QM EoS as well in order to obtain
a thermodynamically sound phase transition. This makes it hard, if not
impossible, to obtain a hybrid EoS which would describe a two solar mass
NS. Still the QM EoS by itself is not necessarily in contradiction with the
existence of high neutron star masses.

For our analysis, we avoid the problem of a nuclear parameter scan by
applying the Dirac–Brueckner Hartree–Fock (DBHF) EoS which has proven
to perform reasonably well for describing nuclear matter saturation prop-
erties and kaon data [42] as well as NS properties [2] even though it tends
to behave too stiff above densities of about 3.5 times saturation density.
On the other hand, this stiffness occurs in a region, where QM degrees of
freedom are not unlikely to be the only ones which are relevant. Amongst
other reasons we prefer the DBHF EoS because it is based on a relativistic
and microscopical description of many-particle interactions. It starts from
a given free nucleon–nucleon interaction (the relativistic Bonn A potential)
fitted to nucleon–nucleon scattering data and deuteron properties. In ab ini-
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tio calculations based on many-body techniques one then derives the nuclear
energy functional from first principles, i.e., treating short-range and many-
body correlations explicitly. In the relativistic DBHF approach, the nucleon
inside the medium is dressed by the self-energy based on a T-matrix. The
in-medium T-matrix as obtained from the Bethe–Salpeter equation plays the
role of an effective two-body interaction which contains all short-range and
many-body correlations in the ladder approximation. As we have shown
in the context of hybrid EoS the rather stiff behavior at high densities is
not necessarily relevant if the phase transition to QM occurs at low enough
densities of about three to four times saturation density [9].

3. Results

3.1. Hybrid neutron stars

Unlike to previous work, where we applied both, the flow and two-solar
mass constraint, simultaneously in order to obtain a phenomenologically
sound hybrid EoS [9] we start this analysis from calculating neutron star con-
figurations for a wide range of vector and diquark couplings (ηV ∈ [0.0, 0.7],
ηD ∈ [0.8, 1.15]). To further extend the previous study we apply a different
parameterization for the scalar coupling strength, as well, applying the pa-
rameters from the row labeled ‘∞’ in Table I of Ref. [35]. As we will show,
this choice significantly affects the outcome of the present study.

Before we discuss the overall result of a full variation of the two free
parameters ηV and ηD, we keep one of them fixed at a reasonable value and
vary the other. We consider any choice to be reasonable which eventually
describes a two solar mass NS if one varies the one remaining free parameter.
In Fig. 1 the vector coupling is kept constant at a value of ηV = 0.3 while
the diquark coupling is varied in the range ηD = 0.80 . . . 1.10. At ‘low’ values
of ηD, here up to ηD = 1.00, we find the required massive NS configurations.
As one observes, an increase of ηD does not only result in a decrease of the
maximum NS mass but lowers the critical density for the phase transition,
too. In other words, an increase of ηD increases the content of QM in massive
NS and lowers the maximum NS mass at the same time. On the other hand,
keeping the diquark coupling ηD at a constant value and increasing the
vector coupling will increase both, the maximum NS mass and the critical
density. This is illustrated in Fig. 2. Again, there is a critical value of ηV

corresponding to a minimal stiffness of the EoS which has to be exceeded in
order to obtain NS configurations with a sufficiently high maximum mass.
In the illustrated example for ηD = 1.0 this holds for values larger than a
critical coupling slightly above ηD =0.2.
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Fig. 1. At constant vector coupling (here ηV = 0.3) an increase of ηD lowers both,
the critical density and the maximum NS mass.
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Fig. 2. At constant diquark coupling (here, ηD = 1.0) an increase of ηV increases
the maximum NS mass and the critical density.

With this understanding of the influence of ηD and ηV on both, the max-
imum NS mass and the critical density for the onset of the phase transition
we now perform a variation over the full available parameter space region of
ηD–ηV in which we can obtain stable hybrid NS configurations.
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The result of this study is summarized in Fig. 3, which we will now discuss
in detail. From the obtained mass-radius and mass-density relations of each
of the differently parameterized hybrid EoS we extracted two numbers only,
the maximum possible NS mass and the NS mass at which the central density
becomes large enough to generate a QM core in the NS. Consequently, we
call the latter quantityMonset. The middle gray (red) band in Fig. 3 labeled
PSR J1614-2230 corresponds to EoS parameterizations which describe a
maximum mass exactly within the interval M = 1.97 ± 0.04M� as it has
been reported for PSR J1614-2230. As we understand from the previous
paragraphs, it is possible to obtain more massive solutions by increasing
ηV or decreasing ηD. As both of these operations increase the transition
density, one eventually obtains massive NS which are purely hadronic. This
can be either because the transition occurs at very large densities which
are not realized in NS or, more relevant for our considerations, because
the hybrid NS solutions become unstable. Examples for this situation are
found in Fig. 2 for all ηV > 0.4. The hatched upper left/cyan region in
Fig. 3 corresponds to all EoS parameterizations which result in unstable
hybrid solutions. The opposite extreme scenario results from increasing ηD

or decreasing ηV. Then, the transition density is lowered until eventually
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Fig. 3. The overall result of the parameter study of the NJL model concerning
the vector (ηV) and diquark (ηD) channel coupling. The middle gray (red) band
and all parameter pairs over it correspond to EoS which reproduce at least 1.97±
0.04M� (PSR J1614-2230), in the upper left gray (cyan) region no stable hybrid
configurations are found, while the right gray region corresponds to ‘mostly’ quark
stars. A more detailed discussion is given in the text. Black filled circles correspond
to parameterizations mentioned in the text.



766 T. Klähn, D. Blaschke, R. Łastowiecki

only a thin hadronic layer remains and the NS are basically pure quark star
configurations. This scenario corresponds to the gray (orange) region labeled
‘Quark Stars’. In this parameter region, the quark matter EoS has an early
onset of the pressure due to a decrease of the dynamical quark mass before
the first order phase transition which results in a low QM transition density.

It is interesting to observe that there is a band (middle gray (red)) of EoS
parameters in the ηD–ηV plane with resulting maximum NS masses of 1.97±
0.04M�. While the middle gray (red) band in Fig. 3 denotes configurations
with maximum masses corresponding to PSR J1614, it is worthwhile to ask
for the actual quark content of these configurations. For the purpose of this
article we will make a qualitative statement, only, and postpone quantitative
analyses to a later publication. The curves labeled Monset in Fig. 3 indicate
from which NS mass on the EoS results in hybrid NS solutions. Hence it
is favorable to have a small value of Monset in order to obtain large QM
cores. Therefore, the largest QM content for a high mass NS has to be
expected in the upper right corner of Fig. 3. This is illustrated in Fig. 4.
We point out that the middle gray (red) band describes NS configurations,
where the maximum mass corresponds to the reported mass of PSR J1614,
only. Of course, more massive NS are possible. As we are interested in
massive NS with large quark cores, Fig. 5 shows NS configurations from the
upper right corner of Fig. 3. Large quark cores in our EoS parameterization
are in general favored for values of ηV = 0.5 . . . 0.6. This is in vicinity of
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Fig. 4. Systematics of mass-radius and mass-central density curves for chosen pa-
rameter sets with maximum mass equal to that of PSR J1614-2230. Large values
of ηD and ηV result in a phase transition at lower densities and, therefore, a higher
content of QM for massive NS.
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the value ηF
V = 0.5 as obtained after Fierz transformation of the one-gluon

exchange interaction (details in Ref. [18]). It is noteworthy, that comparable
small changes of the diquark coupling constant strongly affect the transition
density. As an example, Fig. 5 illustrates that with constant ηV = 0.6 a
change of a few percent in ηD (= 1.11 . . . 1.14) makes the difference whether
a rather typical NS with a mass of, e.g., M = 1.4M� has QM content or
not.
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Fig. 5. Mass-radius and mass-central density relation for a selection of EoS param-
eterizations with mostly significant QM core (as found in the upper right corner of
Fig. 3).

3.2. Implications for HIC

In isospin-symmetric matter as found in HIC our main statements re-
garding the influence of ηV and ηD on the stiffness of the EoS and the
transition density do not change. Increasing ηV at constant ηD increases
the stiffness and the transition density, increasing ηD at constant ηV reduces
the stiffness and lowers the transition density. The transition densities in
symmetric matter are plotted in Fig. 3, labeled as nsym

onset. It is remarkable
that along the middle gray (red) band (configurations with maximum masses
corresponding to the mass of PSR J1614) the transition density in symmet-
ric matter has an almost constant value of nsym

onset ≈ 4nS. This is a distinct
difference to what we learned for the electrically neutral and β-equilibrated
EoS for NS matter, where the transition density decreased from the lower
left to the upper right within the middle gray (red) band. Since the transi-
tion density in symmetric matter is lower only below the middle gray (red)
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band, a region where the maximum NS masses are not sufficiently large this
model predicts nsym

onset ≈ 4nS as a lower limit on the critical density for the
phase transition in symmetric matter. It is necessary to point out, that our
previous study [9] gave a different result and predicted a lower transition
density. In order to illustrate this, we plot hybrid EoS parameterizations
in symmetric matter corresponding to NS EoS with maximum masses of
1.97 ± 0.04M� (along the middle gray (red) band in Fig. 3) in Fig. 6 and
our previous result in Fig. 7. While Fig. 6 suggests, that the phase tran-
sition occurs at densities too high to prevent the nuclear DBHF EoS from
violating the flow constraint, our old results in Fig. 7 perform significantly
better. This observation gives our study a surprising twist which we will
investigate in future work. The reason for this different behavior is not hard
to comprehend. Both EoS start from a different parameterization already on
the level of the scalar coupling constant. The larger dynamical quark mass
resulting from the parameterization applied for the present study (see [35]
for the actual values) causes a general shift of the QM onset to larger chem-
ical potentials. Therefore, the phase transition from nuclear to QM simply
follows this trend. From our perspective, this is the first time, that high
density observables as elliptic flow and maximum NS masses can actually be
applied to distinguish models with different parameterizations in the scalar
channel. Of course, the usual caveats have to be made, lead by the most
serious one: In order to draw final conclusions, first it has to be made clear
beyond any doubt, that NS actually have a QM core. At the current stage,
this statement is neither proven nor disproven. If observational evidence in
favor of the presence of QM in NS should ever arise, many more statements
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can be made, not only about the transition density in symmetric matter.
Large NS masses require rather stiff QM EoS. As a consequence, the tran-
sition region in the density domain is not very large. This is illustrated in
Table I by a few examples for parameters within the middle gray (red) band
in Fig. 3 by calculating the difference ∆n between QM and NM density
at the phase transition. Since the quark content increases with ηV a clear
signature for QM in NS would imply at least ∆n < nS ≈ 0.16 fm−3.

TABLE I

Density difference between QM and NM at the phase transition for a few parame-
terizations with Mmax ∈ (1.97± 0.04)M�.

ηV 0.1 0.2 0.3 0.5 0.6
ηD 0.92 0.98 1.02 1.10 1.15

∆n [fm−3] 0.144 0.107 0.086 0.041 0.017

4. Conclusions

We performed a systematic model analysis of an NJL-type EoS, where
we investigated the dependence of NS properties on the diquark and vector
coupling constants. It is possible to describe NS configurations with a signif-
icant amount of QM and maximum NS masses which are in agreement with
the reported high mass of PSR J1614-2230. The amount of QM in an NS will
increase with increasing vector coupling if the diquark coupling is adjusted



770 T. Klähn, D. Blaschke, R. Łastowiecki

accordingly. Therefore, both channels are important for the understanding
of NS phenomenology. Due to a different choice of the scalar coupling and
the resulting larger dynamical quark mass, the present model parameteri-
zation does not resolve the conflict of the nuclear DBHF EoS with the flow
constraint. This result is of great importance since it implies that without
a sound understanding of the chiral phase transition in medium, otherwise
identical, models can come to quantitatively significantly different results.
In particular, this raises doubts about the predictive power of any EoS which
does not account for the mechanism of chiral symmetry breaking. Of course,
we do not intend to imply, that NJL-type models will provide the ultimate
tool to describe the QCD-phase transition qualitatively and quantitatively
correct. There are many open questions, which will need to be addressed in
the future, most importantly the mechanism of confinement/deconfinement
in medium. Significant improvement of any existing model is required in
order to understand this phenomenon and to finally get rid of the neces-
sity to construct thermodynamically motivated Maxwell- and Gibbs-phase
transitions, which are not suited to provide deeper insights into the micro-
physical mechanisms governing QCD phase transformations. First steps in
this direction have been performed within a generalized NJL model [43].
Further progress was made in a microscopic description of the baryon disso-
ciation in dense matter, based again on a NJL model approach [44], where,
in particular, the interplay between chiral symmetry restoration and di-
quark condensation transitions at high densities for the spectral function
of nucleons has been investigated. Further steps will be taken towards the
development of an EoS which describes the Mott dissociation of baryons
into their quark constituents in a consistent way which accounts for nucle-
onic bound and scattering states simultaneously. An EoS of this quality has
been developed within a generalized Bethe–Uhlenbeck approach for strongly
interacting matter in order to describe the Mott dissociation of deuterons
in nuclear matter [45] (see also recent work on cluster formation in low-
density nuclear matter [46, 47]) and the Mott effect for mesons in quark
matter [48,49].
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