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The interweaving chiral spirals (ICS), that is defined as superposition
of differently oriented chiral spirals, is important for qualitative under-
standings of the intermediate quark density region as well as quantitative
estimates of the Quarkyonic region. We discuss how to construct the ICS,
taking the (2+1) dimensional Fermi system as an example. We postu-
late that the presence of the ICS would delay the occurrence of the chiral
restoration as well as deconfinement phase transition, by tempering the
growth of quark fluctuations.
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1. Central ideas: qualitative impacts of the ICS

Recently, it has been argued that there is a new state of QCD matter at
high baryon density and low to intermediate temperatures [1] (Fig.1).

This novel state is called Quarkyonic matter, distinguished from nuclear
matter by its bulk quantities such as pressure. The Fermi sea is mainly
composed of quarks, not nucleons, in the region a little bit above µq ∼
MN/Nc ∼ ΛQCD. This is because after the emergence of nucleons, a small
change in µq rapidly enhances nucleon density, making strong short distance
interactions among nucleons crucial. Thereby nucleons are not appropriate
degrees of freedom to describe the bulk part of the Fermi sea — the quark
picture is absolutely necessary to describe Quarkyonic matter.

∗ Talk presented at HIC for FAIR Workshop and XXVIII Max Born Symposium “Three
Days on Quarkyonic Island”, Wrocław, Poland, May 19–21, 2011.
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Fig. 1. A speculated QCD phase diagram.

Quarkyonic matter should be also distinguished from conventional de-
confined quark matter by its thermal and Fermi surface excitations. The
excitations are confined, even after quarks are released from nucleons. A
proper understanding of confined excitations is a basic starting point for
any discussions of phase structures, transport phenomena, and for construc-
tion of the effective Lagrangian.

One of the most relevant observations in Ref. [1] is that the scale for
the formation of the quark Fermi sea, µq ∼ ΛQCD, and that for the decon-
finement of the excitations, µq ∼ N

1/(d−1)
c ΛQCD (d: spatial dimension), are

conceptually different. The latter may be estimated by comparing quantum
fluctuations of gluons with those of quarks near the Fermi surface. This
observation was tested for (1+1) dimensional QCD, and it was argued that
excitations are always confined1 independently of Nc, while the pressure is
saturated by free quark contributions [2].

Now, let us ask what happens to chiral symmetry. This issue is very
important for qualitative understandings of the intermediate density region
as well as quantitative estimates for the Quarkyonic region. Below, we will
argue that chiral symmetry is spontaneously broken by inhomogeneous chiral
spirals, tempering the growth of the quark fluctuations at finite density.

Sometimes it is said that Quarkyonic matter is defined as a chiral sym-
metric confined matter, although chiral symmetry was not a primary issue
in the original proposal of Ref. [1]. If one sticks to this definition, it might be
very difficult to imagine the existence of Quarkyonic matter at Nc = 3. In-
deed, once the quarks near the Fermi surface become gapless, it would largely
enhance quark fluctuations in addition to the phase space enhancement at

1 In spatial one dimension, the phase space for quark fluctuations is always the same
as vacuum case, so the confining force is never modified.
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finite density. Recent results of the functional renormalization group appli-
cation to the PNJL model for not very high density [3] presumablly should
be interpreted in this context.

A general tendency of model analyses, without depending on whether
models are confining or not, suggests that the chiral restoration occurs
shortly after the formation of the quark Fermi sea, or pF ∼ ΛQCD [4]. This
trend may be understood by observing that the creation of anti-quarks,
which are ingredients of the usual chiral condensate, costs more energy for
the larger quark Fermi sea. This is so because the particle in the Dirac sea
must go above the Fermi surface to avoid the Pauli-blocking (Fig. 2).

Fig. 2. Three types of chiral pairings.

At finite density, however, more proper ingredients of condensates are
particle-holes near the Fermi surface. The excitations near the Fermi surface
naturally have large momenta, |~p| ∼ µq, but they do not cost additional
kinetic energy much, compared to the energy before excitations. Shown in
Fig. 2 are the exciton and density wave pairings.

In an exciton case, the total momenum of a pair is ∼ 0, but the relative
momentum between a particle and a hole is ∼ 2µq. In a confining model,
such a pairing accompanies a large string, costing large potential energy.

In a density wave case, while the total momenum of a pair is ∼ 2µq,
a particle and a hole co-move without forming a large string. Thus the
density wave pairing should be energetically favored compared to the exciton
pairing. (Arguments based on confining model picture are useful but not
indispensable, though. See below.)

Actually the chiral density wave solution can be always interpreted as
the chiral spirals. A key observation is that once we have a condensation
of a pair moving to, say, +z-direction, there is also a pair moving to −z
direction. Mathmatically, one can project out fermion components moving
to ±z directions by operating the projection matrices [5],

ψ± ≡
1± γ0γz

2
ψ . (1)
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Then, we have two types of the chiral condensates,

〈
ψ̄−ψ+

〉
∼ ∆e2iµqz ,

〈
ψ̄+ψ−

〉
∼ ∆e−2iµqz , (2)

whose sum and difference give

〈
ψ̄ψ
〉
∼ ∆ cos(2µqz) ,

〈
ψ̄iγ0γzψ

〉
∼ ∆ sin(2µqz) , (3)

with a fixed radius of ∆ of the order Λ3
QCD. These condensates obviously

break the chiral symmetry, translational invariance, rotational invariance,
and the second condensate further breaks parity locally.

Here once again we emphasize, that in the presence of the Fermi sea, large
momenta naturally appear without costing much excitation energies, so one
should not be surprised at the emergence of condensations with relatively
large momenta. Indeed, analyses of both nonconfining [6,7,8,9] and confining
models [5] suggest that the chiral spiral solution overtakes the homogeneous
solution.

Rather a more nontrivial question is related to the fact that the chiral
spiral must have a particular orientation. Let us ask: Can chiral pairs be
formed in such a way to cover the entire Fermi surface, and can differently
oriented chiral spirals be interweaved in a consistent way?

To answer to these questions will be very important for considerations
about whether the chiral symmetry breaking may survive after taking the
color superconductivity into account. If only single chiral spiral in one par-
ticular direction were possible, we could employ a less number of pairs for
chiral condensations than we do for diquark condensations. If this would
be the case, the color superconducting phase would overtake a single chiral
spiral [7]. But instead we shall suggest a possibility that the ICS appears as
far as the nonperturbative gluon exchange survives.

A possibility of the ICS has been qualitatively discussed in a confining
model [10], although whole aspects about the ICS were not fully explored
because of the technical difficulties in treating the deep infrared region of
the gluon exchange. Actually, however, key aspects about the ICS may be
extracted without using the confinement, and, in fact, are rather robust to
the detailed behaviors in the deep infrared region.

Below, we shortly highlight how to construct the ICS for the nonconfining
model in (2+1) dimensions, together with the parametric estimates of several
effects. How to handle the corrections, relations with the previous works
[8,9], etc., have been comprehensively discussed in a recent paper [11], so an
interested reader should consult it for details.
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2. How to construct the ICS in (2+1) dimensions

As an example of the ICS, we consider a (2+1) dimensional Fermi sea2

at T = 0, purely because possible shapes of the Fermi surface are relatively
simple. An extension of our treatments to higher dimensional systems are
technically nontrivial but conceptually straightforward.

We first divide the Fermi sea into 2Np wedges (Fig. 3). A wegde in one
side of the Fermi sea and a wedge in the opposite side are regarded as a
pair, and we call it one patch domain. We denote the height of each wedge
as Q, and its open angle as 2Θ = π/Np. Each patch will generate a single
chiral spiral. The variables Q and Θ are variational parameters which will
be optimized in such a way to minimize the total free energy.

Fig. 3. A 3-patches = 6-wedges case.

Below, we will use the canonical emsemble with specifying quark number
density or pF, because the presentation of ideas becomes simpler than the
grand canonical case. Then the Fermi volume conservation can be used to
rewrite Q as a function of pF and Θ. In the canonical emsemble, our goal is
to minimize the total energy3 by choosing the optimal value of Θ.

Essentially, the total energy and the shape of the Fermi surface will be
determined by balancing the following energy costs and gains (Fig. 4):

(i) The kinetic energy cost arising from the deformation of the Fermi
surface, which weakly depends upon the condensation effects. This
contibution becomes dominant for large Θ.

(ii) The energy gain in a single patch from the condensation effects. The
condensation effects bend down the single particle dispersion. Then
particles occupy smaller energy orbits, reducing the total single particle
energy. In the following, the quark mass gap will be denoted as M .
This contribution is less sensitive to the angle Θ compared to other
contributions.

2 Precisely speaking, in odd dimensional space-time, the chirality is not defined, so
the terminology “chiral” spirals may be a little bit misleading. But the mechnism to
generate spirals do not depend on this fact.

3 At T = 0, the minimization of the free energy in the grand canonical emsemble is
thermodynamically equivalent to the minimization of the total energy in the canonical
emsemble.
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(iii) Coherent interactions among differently oriented chiral spirals (we call
it inter-patch interaction) which cost energy. They originate from
the condensation effects, so become less important as condensates get
smaller. It becomes increasingly important for small Θ due to the
enhanced number of inter-patch interactions.

Fig. 4. The energy gains and costs.

Below, we shall give estimates for these contributions, starting with the
thereotically clean set up, that is, the leading order (LO) of the 1/Nc expan-
sion and the high density expansion in powers of ΛQCD/pF. Although LO
results are not directly applied to the phenomenologically interesting region,
it is not difficult to specify which effects will grow at lower density, and how
results will be modified qualitatively. Indeed, many features of the previous
works [8, 9], which have been numerically done for relatively lower density,
can be understood from this analytic framework.

For explicit estimates, it is indispensable to introduce models. In par-
ticular, the momentum dependence of the interaction strongly affects the
estimate of the inter-patch interactions. We will explain the features of the
model, then move to parametric estimates of several effects.

2.1. A model

In many studies of the intermediate density, typically the 4-Fermi interac-
tion has been used, with the ultraviolet (UV) cutoff on the quark momenta.
But this approach will be problematic when the quark Fermi momentum pF

becomes closer to the UV cutoff. Thus, we have to use alternative descrip-
tions at the intermediate density region. Our model is the following nonlocal
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4-Fermi interaction,∫
d3x

(
ψ̄ψ(x)

)2 → ∫
dx0

∫
q,p,k

(
ψ̄(~p+ ~q)ψ(~p)

) (
ψ̄
(
~k
)
ψ
(
~k + ~q

))
θp,k ,

(4)
where θp,k ≡ Θ(Λ2

QCD − (~p− ~k)2), and momentum integration is for ~q, ~p,~k.
The large-Nc QCD is mimicked as follows. The one-gluon exchange includ-
ing nonperturbative effects is shown in Fig. 5 (a). Its strength damps as
the momentum transfer becomes large. We roughly take into account this
property by introducing a step function, Θ(Λ2

QCD − (~p − ~k)2), keeping the
interaction strength constant.

In Fig. 5 (b), we show the color line representation to illustrate how the
one-gluon exchange interaction should be contracted into a four-Fermi type
interaction. Taking into account features in Figs. 5 (a) and 5(b), we arrive
at a simple model described in Eq. (4) and Fig. 5 (c).

Fig. 5. (a) The nonperturbative gluon exchange which is supposed to damp quickly
in the UV region. (b) The color line representation of the one-gluon exchange.
(c) Our effective four-Fermi interaction including form factor effects.

The main consequence of our form factor treatments can be best seen in
the Schwinger–Dyson or gap equations (see Fig. 6). We illustrate it for zero
density case. After picking up a residue, we arrive at

M(~p) =
∫

d~k

(2π)2
M
(
~k
)

2ε
(
~k
) θp,k ,

(
ε
(
~k
)

=

√
M
(
~k
)2

+ ~k2

)
. (5)

Note that because of θp,k, the contributions to the mass gapM(~p) come from
the integral around ~p. Putting in a different way, a particle with ~p is affected
by the condensate made of particles and anti-particles with momenta close
to ~p. So quark-condensate interactions are local in momentum space. Also it
is clear that at very large |~p|, the integrand quickly damps, leading to small
M(~p). The chiral restoration occurs for high energy excitations.
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Fig. 6. The leading self-energy diagram at zero density. (Left) The diagram in
terms of QCD dynamics with the Rainbow Ladder approximation. (Right) The
corresponding diagram in our model.

By applying this argument, one can derive several conclusions about
finite density. The low energy excitations appear near the Fermi surface,
so that the chiral symmetry is violated near the Fermi surface, but it is
gradually restored in the region far from the Fermi surface.

Thanks to the locality in momentum space, the inter-patch interactions
among condensates occur only if their momentum domains are close. In
the construction of the ICS, this property is essential to restrict interactions
among differently oriented chiral spirals only near the patch boundaries. If
this locality is absent, inter-patch interactions would occur everywhere in the
Fermi surface destroying the chiral spirals one another, and would reduce
the quark mass gap considerably [9].

Now we are ready to give qualitative estimates of several contributions.

2.2. The energy cost: deformation energy

The contribution (i) is rather easily estimated. In one wedge, Q is fixed
by the Fermi volume conservation,

p2
FΘ = Q2 tanΘ , (6)

and the difference between the deformed Fermi sea and the spherical Fermi
sea can be calculated as

∆Edeform.(Θ) ∼ Nc · p3
FΘ

4 +O
(
Θ6
)
, (7)

where we have assumed Θ � 1 and M/pF � 1. Interestingly, Θ2 term
disappears after the subtraction of the spherical Fermi sea.
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2.3. The energy gain: single particle energy

The solution of the gap equation gives the mass gap,M ∼ ΛQCD, opened
near the Fermi surface within distance of ∼ ΛQCD. On the other hand,
quarks outside of this domain are not strongly affected by the condensates.
Thus, the energy reduction after summing up all patch contributions is

∆Econd.(Θ) ∼ Nc · (−M)× (ΛQCD · pF tanΘ)×Np ∼ −NcΛ
2
QCDpF , (8)

where −M and ΛQCD · pF tan 2Θ characterizes the bending down of single
particle energy, a number of particles acquiring the mass gap within a single
patch, respectively. A sum of all patch contributions is approximately Θ
independent, and does not play a relevant role in the optimization of Θ.

2.4. The energy cost: inter-patch interactions among condensates

Since the single particle and the condensate interact only if their domains
in momentum space are close one another, so interactions between differently
oriented chiral spirals occur only near the patch boundaries. The strength
of the interaction is proportional to M2. Taking into account the phase
space where interactions occur, and counting a number of patch boudaries,
we estimate the energetic cost as

∆Eint.(Θ) ∼ Nc ·M2ΛQCD ×Np ∼ NcΛ
3
QCD/Θ . (9)

Note that the contributions are proportional to 1/Θ, so the creation of con-
densates are not favored for very small Θ. Actually, near the patch bound-
aries the quark mass gap becomes effectively smaller.

2.5. The optimimal value of Θ

Now we can optimize Θ by differentiating the total energy. Since the
single particle contributions do not strongly depend on details of Θ, the
optimal value of Θ is essentially determined by balancing the deformation
energy and the inter-patch interaction energy

1
Nc

∂

∂Θ
(∆Edeform. + ∆Eint.) ∼ 4p3

FΘ
3 −

Λ3
QCD

Θ2
∼ 0 , (10)

which determines the optimal value of Θ as

Θ ∼
(
ΛQCD

pF

)3/5

. (11)

Therefore, a number of chiral spirals, Np, increases as density does. Since
Np is an integer, the phase transition occurs discontinuously.

With this value of Θ, the deformation and interaction energies are ∼
p
3/5
F Λ

12/5
QCD, smaller than the single particle contribution, ∼ −pFΛ

2
QCD.
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3. Summary

We have argued why the ICS is potentially relevant, and shown how to
construct it by taking the (2+1) dimensional Fermi system as an example.

The chiral spirals is a mechanism that can generate the quark mass gap
of O(ΛQCD) even after the formation of the quark Fermi sea. We expect that
the mass gap would temper the growth of the quark fluctuations near the
Fermi suface, shifting chiral restoration and deconfinement lines to higher
temperature and density than those predicted under the assumption of the
homogeneous condensates.

We have argued the ICS only at T = 0, but for phenomenological appli-
cations to the RHIC low energy scan or future FAIR and NICA experiments,
the extension of the present results to T 6= 0 are absolutely necessary. We
expect that some qualitative changes occur at some temperature. Such an
extension will be presented in near future.
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