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Observable manifestations of the chiral/deconfinement phase transition
in relativistic heavy-ion collisions may be strongly affected by the fast ex-
pansion of the produced quark-gluon plasma. We study this effect within
the linear sigma model with constituent quarks, which predicts a chiral
phase transition for a static system in thermal equilibrium. We derive
coupled equations for the hydrodynamic variables and the order-parameter
field, so-called chiral fluid dynamics. Stability of the chiral fluid in the
static and expanding backgrounds is investigated by considering the evo-
lution of fluctuations with respect to the mean-field solution. The effects
of supercooling and reheating in the case of the first order phase transition
are studied for the Bjorken-like background.
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1. Introduction

The investigation of the phase diagram of strongly interacting matter,
has remained in the focus of theoretical and experimental studies for more
than two decades. In particular, searching for the critical point and onset of
the deconfinement phase transition in relativistic heavy-ion collisions is an
active research area. Most previous studies of phase transition signatures
were based on the equilibrium concepts. On the other hand, a relativistic
heavy-ion collision is a very fast process and one should expect that the
phase transition may be strongly affected by the dynamics. Non-equilibrium
effects associated with the chiral/deconfinement phase transition have been
studied within several macroscopic approaches [1, 2, 3, 4, 5, 6, 7, 8, 9].
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In the region of the phase diagram, where the deconfinement phase tran-
sition is of first order, an extra time-scale appears, which is associated with
the nucleation process [10]. In this paper, we are particularly interested
in the competition between the instability associated with the first order
phase transition and expansion of the deconfined fluid produced in rela-
tivistic heavy-ion collisions. Only when the phase transition timescale is
short with respect to the hydrodynamic timescale, we can assume a two-
phase equilibrium and the Equation of State given by the Maxwell construc-
tion [11,12,13,14]. However, if this is not the case, the fluid can pass through
a thermodynamically unstable region of the Equation of State, leading to
large-scale fluctuations, which themselves can be used as a signal of the
phase transition. Generally, a fast expansion of the fluid leads to a suppres-
sion of the nucleation process in favor of the spinodal decomposition [4, 7].
To investigate this effect, below we study the stability of fluctuations around
a hydrostatic state and Bjorken-type expanding state. By comparing the re-
sults, we will be able to identify these features of the phase transition which
are affected by the fast dynamics.

This paper is based on theoretical developments and extended calcu-
lations presented in Refs. [15, 16]. For our analysis, we use a generalized
hydrodynamic approach, namely, so-called Chiral Fluid Dynamics (CDF),
where the fluid evolution is coupled with the dynamics of the chiral order
parameter. This model was first proposed in Ref. [17] and further developed
in several subsequent works [16, 18, 19, 20, 21]. It is derived by assuming
that microscopic and macroscopic degrees of freedom are clearly separated.
Then, the coarse-grained macroscopic dynamics can be described by a re-
duced number of variables, which are called the gross variables.

2. Derivation of chiral fluid dynamics

As the low-energy effective theory of QCD, we adapt the linear sigma
model with constituent quarks [22] whose qualitative features (chiral sym-
metry, universality class, phase transition structure) are thought to coincide
with the QCD [23, 24]. More recently, the thermodynamics of this model
was studied on the mean-field level [25], as well as including the field fluctu-
ations [26,27]. Following the previous works [17,18], we describe the coarse-
grained dynamics of the quark degrees of freedom with the hydrodynamic
variables, coupled to the order parameter field σ via its equation of motion.

The Lagrangian of the linear σ model is

L = q̄ (iγµ∂µ − g (σ + iγ5~τ~π )) q + 1
2

[
(∂µσ)2 + (∂µ~π)2

]
− V (σ, π) , (1)

where q is the quark field, σ and ~π are the chiral fields. The “Mexican Hat”
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potential V is given by

V (σ, ~π) =
λ2

4
(
σ2 + (~π)2 − v2

)2 −Hσ , (2)

where the parameters λ, v andH are calculated by using the pion massmπ =
138 MeV, the pion decay constant fπ = 93 MeV, and assumed sigma mass
mσ = 600 MeV:H = fπm

2
π, v2 = f2

π−m2
π/λ

2 and λ2 = (m2
σ−m2

π)/(2f2
π) [25].

The coupling constant g is usually chosen so as to reproduce the one-
third of the vacuum nucleon mass, that is, g = 3.3. Then, the chiral phase
transition at the vanishing chemical potential is shown to be of the crossover
type. But the phase diagram has a critical (end) point at a finite baryon
chemical potential, where the order of the phase transition changes to the
first order [25]. In this paper, we limit our consideration to the vanish-
ing chemical potential only. In this case, the effect of the first order phase
transition can be studied by changing the magnitude of the coupling con-
stant g, as was proposed in Ref. [5]. Below, we consider the cases of crossover
(g = 3.3), second order (g = 3.6, Tc = 140 MeV) and first order (g = 4.5,
Tc = 128.5 MeV), phase transitions.

For the sake of simplicity, the pion field is disregarded in the rest of
the paper. We consider an idealized situation, where the quark degrees of
freedom have already achieved the local thermal equilibrium and can be
approximately described as an ideal fluid, characterized by the energy den-
sity ε, the pressure P and the four-velocity uµ. On the other hand, the sigma
field behaves as a classical external field (the chiral order parameter) acting
on quarks through the mass term M = gσ. Then, the energy momentum
tensor of the system can be represented as

Tµν = Tµνfluid + Tµνfield . (3)

The energy-momentum tensor of an ideal fluid is generally represented as

Tµνfluid = (ε+ P )uµuν − Pgµν , (4)

where ε and P are the energy density and pressure of the fluid in the rest
frame.

These quantities are calculated via the thermodynamic potential of the
quark sector in the mean-field approximation

Ω(M) = −νqT
∫

d3p

(2π)3

{
ln
[
1 + exp

(
µ− Ep
T

)]
+ ln

[
1 + exp

(
−µ− Ep

T

)]}
, (5)
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where T , µ and Ep are temperature, quark chemical potential and single-
particle energy

√
p2 +M2 with M being the constituent quark mass, re-

spectively. The degeneracy factor νq = 2NcNf = 12, where Nc = 3 is the
number of colors and Nf = 2 is the number of flavors. Strictly speaking,
the above expressions are valid only when M is a space-time independent
constant determined by the minimum of the total thermodynamic potential

Ωtot(σ, π) = Ω(M) + V (σ, ~π) . (6)

However, in our exploratory study below, we assume that M = gσ(x) even
when the σ(x) is varying in space and time according to the equation of
motion obtained from the Lagrangian

∂2σ + λ
(
σ2 − σ2

0

)
σ −H = −gq̄q . (7)

Further on, we replace the term q̄q in the r.h.s. by the thermal expecta-
tion value, that is, the quark scalar density

〈q̄q〉 ≡ ρs(x) = 2νq
∫

d3p

(2π)3

M

Ep
f(Ep) , (8)

where we have introduced the Fermi distribution function, f(E)=
(
e

E
T +1

)−1
.

As was already mentioned above, in the following calculations we consider
only the case of µ = 0.

After separating the quark contribution, the energy-momentum tensor
of the σ field is obtained from the meson part of Lagrangian (1)

Tµνfield = (∂µσ)(∂νσ)− gµν
[

1
2(∂µσ)2 − V (σ, 0)

]
. (9)

Now the continuity equation for the total energy-momentum tensor (3),
∂νT

µν = 0, can be written as

∂νT
µν
fluid = −∂νTµνfield ≡ S

µ , (10)

where the source term is given by

Sµ = −
[
∂2σ + λ2

(
σ2 − σ2

0

)
σ −H

]
∂µσ = gρs∂

µσ . (11)

This term gives rise to the coupling between the ideal fluid and the evolution
of the chiral order parameter.
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3. Stability analysis in a static background

In this section, we investigate the stability of the chiral fluid with respect
to perturbations of the static background characterized by the chiral order
parameter σ0, temperature T and four-velocity uµ0 = (1, 0, 0, 0). Obviously,
when σ0 is initially chosen on the slope or at the maximum of the thermody-
namic potential, at later times it will roll down to reach the minimum of the
potential. Without any analysis we know that such a state is unstable. Such
situation corresponds to the spinodal decomposition. Thus in the following,
we discuss the stability only around the local minima of the thermodynamic
potential and σ0 is chosen to be the solution of the gap equation (7).

Let us introduce the plan-wave perturbations of these quantities in the
x direction around the hydrostatic state

δσ(x) = δσ(ω, k)eiωt−ikx , (12)
δT (x) = δT (ω, k)eiωt−ikx , (13)
δu1(x) = δu1(ω, k)eiωt−ikx . (14)

Then, the perturbed fluid characteristics F = (ε, P, ρs) can be expressed as

F (σ, T ) = F (σ0, T ) +
(
∂F (σ0, T )

∂T

)
σ0

δT (x) +
(
∂F (σ0, T )

∂σ̃

)
T

δσ(x) . (15)

By linearizing the fluid dynamical equations (10) and the equation of mo-
tion (7) for these perturbations, we obtain the following matrix equation

AX = 0 , (16)

where XT = (δT (ω, k), δux(ω, k), δσ(ω, k)) and A is given in Ref. [15]. The
dispersion relations for perturbations are obtained by solving the equation

det[A] = 0 . (17)

When there is no coupling between the quark fluid and the chiral order
parameter, that is, g = 0, the dispersion relations are given by

ω2 =
(
∂P

∂ε

)
σ0

k2 , (18)

ω2 = k2 + λ2
(
3σ2

0 − v2
)
. (19)

The physical interpretation of these equations is as follows: the first solution
describes the sound wave in the quark fluid, while the second one gives
the dispersion relation for the sigma field fluctuations. The sound velocity,
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c2
s = (∂P/∂ε)σ0 , can be negative at the first order phase transition. In this
case, we obtain solutions with ω2 < 0 or ω = ±i|ω|, i.e. one of the solutions
has negative imaginary part. Such perturbations will grow exponentially,
signaling the instability of the homogeneous static state.

In general, for a finite g, Eq. (17) has four different solutions. However,
they are symmetric with respect to the axis of ω = 0. Thus we consider only
the positive branches of Re ω and Im ω. The solution passing through the
origin, (ω, k) = (0, 0) (analogous to Eq. (18)), is associated with the propa-
gation of sound waves and is called the sound branch. The other solution,
which has a mass gap at k = 0, corresponds to the propagation of the sigma
field fluctuations and is called the sigma branch. In the vacuum, the mass
gap corresponds to the sigma meson mass,mσ ≈

√
2λfπ, see Eq. (19).

In the case of the crossover transition, g = 3.3, there is no imaginary part
and two real branches correspond to the sound and sigma excitations, mod-
ified by the interaction. In this case, the two branches are always separated
from each other and never intersect.

The behavior becomes more complex for g = 4.5. Figures 1 and 2 show,
respectively, the real and imaginary parts of the dispersion relation for dif-
ferent temperatures. They correspond to the four points A (T = 128.5 MeV,
broken phase), B (T=132.1MeV), D (T=122.7MeV) and E (T=128.5MeV,
restored phase) on the (S-shaped) dependence σ0(T ) (see details in Ref. [15]).
In these calculations, we did not apply the Maxwell construction at T = Tc =
128.5 MeV but consider also metastable states. In the temperature interval
between 122.7 MeV and 132.1 MeV, there exist three solutions for the sigma
field, corresponding to two local minima of the thermodynamic potential,
and one maximum between these minima. For the background states which
have higher (lower) temperature than the point B (D), we have only one lo-
cal minimum and the two branches of the dispersion relation are separated
and have no imaginary part, which is shown for the points A and E in Fig. 1.

The states between points B and D correspond to a local maximum
of the thermodynamic potential and the perturbations around these states
are trivially unstable (spinodal instability). A non-trivial behavior can be
observed for the metastable states. Although these states are located in the
local minima of the thermodynamic potential, c2

s becomes negative in this
region of temperatures that induces instability through the coupling to the
hydrodynamic modes. To illustrate this point, the real and imaginary parts
of the dispersion relation for the points B and D are shown in Figs. 1 and 2.
One can see that at low k the sound and sigma branches degenerate into
a single branch (Fig. 1) which has a positive imaginary part (Fig. 2). It is
interesting to note that for g = 4.5, both branches of the dispersion relation
become unstable at small k, i.e. when either c2

s < 0 (sound waves) orm2
σ < 0

(sigma waves).
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Fig. 1. Real parts of the dispersion relation for g = 4.5 at the point A (left up),
B (right up), D (left down) and E (right down), respectively (see details in the
text).

Fig. 2. Imaginary parts of the dispersion relation for g = 4.5 at the point B (left)
and D (right), respectively. The imaginary parts at the points A and E vanish.
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The appearance of the growing modes of density fluctuations is very well
known in the physics of first order phase transitions. They appear when a
homogeneous system is suddenly quenched into the spinodal region of the
phase diagram, defined by the condition c2

s < 0. Usually the instability
region is limited by sufficiently small wave numbers, k < kmax, as is clearly
seen in Fig. 2. The value of kmax is determined by the non-locality scale of
the particle interaction, which is given by mσ in our calculations.

4. Phase transitions in Bjorken-like background

Up to now the dissipative effects, such as the viscosity of the fluid and
damping of the field fluctuations, have been neglected. However, the damp-
ing due to the interaction with the quark fluid should lead to the relaxation
of the chiral fields. This can be taken into account by introducing a friction
term in the equation of motion for the chiral field. Due to these terms, the
energy of the chiral field fluctuations dissipates into the quark fluid. To
fulfill the dissipation–fluctuation theorem the field fluctuations are included
as a noise term on the r.h.s. of the equation of motion

∂µ∂
µσ +

∂Ωtot

∂σ
+ ηuµ∂

µσ = ξ , (20)

which contains the damping coefficient η and the stochastic noise field ξ.
For consistency, the dynamics of the quark fluid should be described now by
the Eq. (10) with the source term

Sµ = (gρs + ηuν∂
ν)∂µσ , (21)

which accounts for the energy-momentum exchange between the fluid and
the field. Details of numerical implementation of this approach are given
in Ref. [16]. For illustration, we present here only a few examples of our
analysis.

The dynamics of fluctuations was studied for an expanding ellipsoidal
fireball (corresponding to semi-peripheral collisions of Au nuclei) with
Bjorken-type velocity field in z direction. The time evolution of the av-
erage value of the sigma field and its fluctuations are shown in Fig. 3 (upper
panel), while Fig. 3 (lower panel) shows the time evolution of the average
temperature and its fluctuations. The average is taken over the central
sphere with radius r = 3 fm. Especially interesting behavior is observed for
the scenario with the first order phase transition. When the transition tem-
perature is reached after t = 5 fm, large parts of the system are still in the
chirally symmetric phase as the average value of the sigma field is still around
10 MeV. These large deviations of the sigma field from its equilibrium value
is the nonequilibrium effect of supercooling. Due to the barrier separating
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Fig. 3. The average values and the variances of the fluctuations of the sigma field
(upper panel) and the average values and the variances of the fluctuations of the
temperature (lower panel) for two phase transition scenarios.

the two minima of the thermodynamic potential, the sigma field is trapped
in the chirally symmetric state even at T < Tc, until the barrier disappears.
Then the sigma field rolls down into a lower minimum corresponding to the
broken phase. The released potential energy is transformed effectively into
kinetic energy of field oscillations, which leads to the dissipation of energy
into the fluid via η-term in the source term (21). We can clearly observe the
reheating effect at the first order phase transition. Between t = 7 fm and
t = 9 fm the system in the central region is reheated from temperature below
Tc to slightly above Tc, followed by a subsequent cooling. This explains the
delayed relaxation of the average sigma field in the scenario with a first order
phase transition compared to the critical point scenario. Moreover, during
the relaxation and reheating process the fluctuations in the sigma field are
enhanced between t = 5 fm and t = 8 fm.
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5. Conclusions

Our main conclusion is that the chiral/deconfinement phase transitions
in relativistic heavy-ion collisions will most likely proceed out of equilib-
rium. Therefore, dynamical effects are expected to play a crucial role. Most
important among them are the following:

• Second order phase transitions (with CEP) are too weak to produce
significant observable effects.

• Non-equilibrium effects in a 1st order transition (spinodal decomposi-
tion, strong fluctuations of order parameter) may help to identify the
phase transition.

• If large QGP droplets are produced in the 1st order phase transition
they will show up in large non-statistical multiplicity fluctuations.
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project. I would like to acknowledge support provided by the Helmholtz
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