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The phase structure of Polyakov-loop extended Nambu–Jona-Lasinio
(PNJL) model is explored at imaginary chemical potential, with partic-
ular emphasis on the deconfinement transition. We point out that the
statistical confinement nature of the model naturally leads to characteris-
tic dependence of the chiral condensate 〈q̄q〉 on θ = µI/T . We introduce
a dual parameter for the deconfinement transition by making use of this
dependence. By changing a four-fermion coupling constant, we tune the
location of the critical endpoint of the deconfinement transition.
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1. Introduction

Phase transitions in QCD have been extensively studied in lattice quan-
tum chromodynamics. While recent development enables us to perform
numerical simulations at physical quark masses, which revealed a crossover
nature of the QCD phase transition at finite temperature [1], analyses at
nonzero quark chemical potential µ have been limited to small µ region due
to the complex fermion determinant, known as the “sign problem” [2]. One
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of several methods circumventing this problem is to use an imaginary chem-
ical potential µ = iµI. Indeed, this method has provided transition lines in
the T–µ plane via an analytic continuation from those obtained at imagi-
nary µ [3,4,5]. Moreover, it has been known that there is a phase transition
specific to the imaginary chemical potential characterizing the deconfine-
ment phase at high temperature [6]. Rich phase structures later found in
the lattice simulations provide a testing ground for understanding the nature
of phase transitions in QCD [7,8,9,10]. Those properties give constraints on
model studies which can be extended to real µ. In this work, we study the
phase structure of the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
model [11, 13] which satisfies fundamental symmetries of QCD relevant for
phase transitions at imaginary chemical potential. Focusing on the decon-
finement transition, we show that the “statistical confinement” feature of
the model naturally leads to characteristic behaviors of the order parame-
ters while details depend on the choice of the Polyakov loop potential. We
discuss dual parameters to characterize the phase transitions. Finally, we
point out the existence of the critical endpoint (CEP) associated with the
deconfinement transition at imaginary chemical potential and clarify the
relation between its location and the chiral phase transition.

In the next section, we will give a brief introduction of the model. We
will discuss the characteristic behavior of the order parameters as well as
the dual parameters in Sec. 3. The critical endpoint of the deconfinement
transition will be discussed in Sec. 4 and Sec. 5 is devoted to the summary.
More details can be found in Ref. [14].

2. PNJL model at imaginary chemical potential

The Lagrangian of the two-flavor PNJL model is given by

L = q̄(iγµDµ −m0)q +Gs
[
(q̄q)2 + (q̄iγ5~τq)2

]
− U(Φ[A], Φ∗[A];T ) . (1)

The model is an extension of the NJL model, which is an effective model
of chiral properties of QCD [15, 16], such that quarks couple with back-
ground gluonic fields described by a Z(3) symmetric effective potential U
which takes care of confinement. In the covariant derivative Dµ = ∂µ− iAµ,
only the temporal components of A0 = gAa0λ

a/2 is included. The effec-
tive potential U is expressed in terms of the traced Polyakov loop and its
conjugate, Φ = 〈TrcL〉/3 and Φ∗ = 〈TrcL†〉/3, respectively. This coupling
between quarks and gluons leads to an almost simultaneous crossover of the
chiral and deconfinement transitions at finite temperature, of which order
parameters are chiral condensate σ ≡ 〈q̄q〉 and the Polyakov loop Φ [11],
provided the Polyakov loop potential U yields a first order transition at
T0 = 270MeV in accordance with pure SU(3) lattice calculations. Two
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functional forms of U , which reproduce the thermodynamic quantities ob-
tained in pure SU(3) lattice gauge theory [12], have been used. One has a
polynomial form

UPol

T 4
= −b2(T )

2
Φ∗Φ− b3

6
[
Φ3 + (Φ∗)3

]
+
b4
4

(Φ∗Φ)4 (2)

with a set of parameters given in [13]. The other is a logarithmic one [17]

Ulog

T 4
= −a(T )

2
Φ∗Φ+ b(T ) log

{
1− 6Φ∗Φ+ 4

[
Φ3 + (Φ∗)3

]
− 3(Φ∗Φ)2

}
. (3)

The logarithm restricts possible values of Φ and Φ∗ to the so-called target
space, since the argument of the logarithm must be positive.

At imaginary µ, the two Polyakov loop variables Φ and Φ∗ are complex
conjugate [18]. Moreover, the partition function of the PNJL model at imag-
inary chemical potential has been shown [18] to have the same periodicity
in θ = µI/T as that of QCD, Z(θ+ 2π/3) = Z(θ), which was pointed out by
Roberge and Weiss [6] as a remnant of Z(3) symmetry. Therefore, we may
express them by using a modulus and a phase Φ = |Φ|eiφ and Φ∗ = |Φ|e−iφ.

The thermodynamic potential in the mean field approximation reads

Ω(T, V, θ) =
(
Gsσ

2 + U
)
V − 4V

∫
d3p

(2π)3
[
3
(
Ep − E0

p

)
+T ln

[
1+3|Φ|ei(θ+φ)−βEp +3|Φ|ei(2θ−φ)−2βEp +e3iθ−3βEp

]
+T ln

[
1+3|Φ|e−i(θ+φ)−βEp +3|Φ|ei(φ−2θ)−2βEp +e−3iθ−3βEp

]]
,

(4)

where Ep =
√
p2 +M2, E0

p =
√
p2 +m2

0, and M = m0 − 2Gsσ. The
first term in the momentum integral is a divergent vacuum term, which is
regularized by a three-momentum cutoff Λ. The cutoff and coupling are fixed
to Gs = 5.498GeV−2 and Λ = 0.6315GeV so as to reproduce the vacuum
pion mass and pion decay constant with m0 = 5.5MeV. In the following,
we mainly focus on the result in the chiral limit m0 = 0 to preserve the
chiral symmetry in the Lagrangian. The chiral condensate σ serves as an
order parameter for the chiral phase transition. The order parameters are
determined by the minimum of the potential which is obtained by solving
the gap equation ∂Ω/∂Xi = 0 with Xi = M, |Φ|, φ.

3. Behavior of the order parameters

3.1. Order parameters at imaginary chemical potential

First, we consider two extreme limits in order to see characteristic θ de-
pendences of σ which has the same periodicity 2π/3 as Ω. Expanding Eq. (4)
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for small e−βEp , we have a gap equation at small |Φ| limit in which only a
term proportional to cos 3θ remains with a small magnitude ∼ e−3βEp indi-
cating the statistical confinement. This dependence naturally leads to the
periodicity 2π/3 when |Φ| is negligible and chiral symmetry is broken. On
the other hand, when |Φ| ' 1, the model reduces to the NJL model except
for the coupling of φ with θ, as seen in Eq. (4). In this case, the apparent
θ dependence is governed by cos θ as a consequence of deconfinement. Al-
though this factor does not match with the required periodicity 2π/3, it is
preserved by a change of φ, namely, the Roberge–Weiss transition.

We show the chiral condensate in the left panel of Fig. 1 obtained by
numerically solving the gap equations. One sees that σ at low temperature
(T = 220MeV) exhibits small and smooth variation as a function of θ,
as discussed above. On the other hand, one sees a cusp at θ = π/3 and
T = 280MeV. This is a consequence of a Roberge–Weiss transition depicted
in the right panel of Fig. 1, in which the phase φ changes from 0 to −2π/3,
smoothly at low T but discontinuously at high T . As a result, the required
periodicity of σ is preserved. One also sees a second order chiral phase
transition for T = 280MeV in which the chiral symmetry is broken around
θ = π/3. This implies the chiral critical temperature at imaginary µ is
higher than that of zero and real µ. This can be also understood from the
gap equation for σ, since cosnθ is replaced by coshnβµ for real µ.
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Fig. 1. Left: Chiral condensate for various temperatures as functions of θ. Right:
Phase of the Polyakov loop φ. Both results are in the chiral limit m0 = 0 and for
the logarithmic potential.

While the above properties are independent of the choice of U , there are
some potential dependent features as follows. In Fig. 1 and the left panel
of Fig. 2, one sees a discontinuity in the order parameters at the same θ.
This shows a first order deconfinement transition which exists only in the
case of the logarithmic potential (3). The polynomial potential (2) exhibits
smoother change near phase transition. In the right panel of Fig. 2, the
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target space of the Polyakov loop is displayed. Owing to the Z(3) symmetry,
U has three degenerate minima at T > T0. Putting quarks into the system
makes one of those minima favored. While ImΦ = 0 is always chosen at
θ = 0, ImΦ 6= 0 is favored at imaginary chemical potential due to the
coupling of θ and φ seen in Eq. (4). At low temperature, where minimum
of U is close to the origin, the minimum of the effective potential smoothly
moves from φ = 0 to φ = −2π/3 across θ = π/3. At high temperature,
however, there is a potential wall which makes the transition from point A
to point B discontinuous. Since the polynomial potential does not have any
restriction of the target space, the minimum passes outside (C) the target
space near the RW transition.
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Fig. 2. Left: Modulus of the Polyakov loop |Φ|. Right: Target space of the Polyakov
loop on complex Φ plane. A region inside the solid lines denote the target space of
the logarithmic potential in which the argument of the logarithm is positive.

The phase diagrams shown in Fig. 3 summarize the behavior of the
order parameters. One sees a first order deconfinement transition and an
associated critical endpoint (CEP) only for the logarithmic potential. This
also implies that the RW endpoint, where the first order RW transition
terminates, is a triple point. On the other hand, one sees a second order RW
endpoint for the polynomial potential. The properties of the RW endpoint
in QCD might reflect the nature of the QCD phase transition at real µ. We
refer to Refs. [8] and [7] for recent calculations of Nf = 2 and Nf = 3 lattice
QCD, respectively. Especially, it should be noted that the order of the RW
endpoint has a non-trivial bare quark mass dependence which cannot be
reproduced by chiral effective models (see Sec. 4). An improved model was
proposed in Ref. [19] to reproduce this property.
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Fig. 3. Phase diagram on T–θ plane. Solid lines, dotted lines, and dashed lines
stand for first, second, and crossover transitions, respectively.

3.2. Dual parameters for deconfinement

It has been shown that information on the deconfinement is encoded in
θ dependence of σ. We can consider dual parameters which characterize
the deconfinement transition. A dual parameter was introduced in [20]. By
considering a twisted boundary condition for quarks q(x, β) = eiϕq(x, 0),
one may define the corresponding chiral condensate σ(ϕ). Then the dual
chiral condensate Σ(n) reads

Σ(n)(T ) = −
2π∫
0

dϕ

2π
e−inϕ

[
− 1
V

〈
Tr
[
(m0 +Dϕ)−1

]〉]
. (5)

While the twisted boundary condition is similar to introducing imaginary
chemical potential [21], it does not apply to the background gauge field.
Therefore, σ(ϕ) has a periodicity 2π and was calculated in a PNJL model
by fixing the Polyakov loop at its θ = 0 value [22]. Particularly Σ(1) is called
dressed Polyakov loop, since it has the same transformation properties under
Z(3) and thus is expected to serve as an order parameter of the deconfine-
ment transition. Analogously, we consider a modified dual parameter which
utilizes the characteristic property of σ(θ),

Σ
(n)
θ (T ) =

3
2π

π/3∫
−π/3

dθe−inθσ(T, θ) , (6)

where we take the integration range [−π/3, π/3], owing to the periodicity of
σ(θ).
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We compare those dual parameters for n = 1 with the Polyakov loop
in Fig. 4, as well as their derivatives with respect to temperature, of which
peaks can be regarded as (pseudo)critical temperatures. One sees that while
dual parameters show a rapid increase as seen in the Polyakov loop (top)1,
their derivatives exhibit different peak structures. The derivatives of the
dual parameters have a peak at the chiral transition temperature, indepen-
dent of U . As for the deconfinement, however, existence of the peak depends
on U . The dressed Polyakov loop exhibits a peak for the Ulog for which |Φ|
shows stronger crossover than UPol. Moreover, the modified dual param-
eter exhibits only a shoulder even for Ulog. This result indicates different
sensitivity of the dual parameters to the chiral and deconfinement transition.
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4. Critical endpoint of deconfinement

Now, let us turn to the deconfinement CEP found in the case of Ulog.
Here, we vary the four-fermion coupling constant Gs to preserve the chiral
symmetry in the Lagrangian. Locations of the CEP are shown in the left of

1 Dual parameters are normalized to 0 as T → 0 and 1 as T →∞ [14].
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Fig. 5 for various values of Gs. One sees the squared critical chemical po-
tential µ2

CEP increases with Gs to reach µ2
CEP = 0 around Gs ' 6.3GeV−2.

In the right of Fig. 5, we also depict a phase diagram for Gs = 6.5GeV−2

in which the CEP exists at real chemical potential. One sees that the first
order deconfinement transition starting from the RW endpoint (see Fig. 3)
is prolonged, while the chiral critical line moves upward. The relation be-
tween these two changes can be understood as follows. Since the Polyakov
loop potential Ulog has a first order phase transition at T = T0, the model
results in the same transition when the effects of quarks are negligible in
thermodynamics. The contribution of quarks to thermodynamic potential
is essentially determined by the dynamical quark massM = m0−2Gsσ, not
by the current quark mass m0, as seen in Eq. (4). When dynamical quark
mass becomes lighter, around T = T0, the deconfinement transition is mod-
ified to a crossover one. As Gs increases, the stronger coupling leads to a
larger condensate |σ(T = 0)| thus the dynamical quark mass becomes heav-
ier. This appears as the modified chiral critical line in the phase diagram at
Gs = 6.5GeV−2 and the resultant dynamical quark mass is heavy enough to
recover the first order the deconfinement transition. At the reference value
of Gs, the imaginary chemical potential weakens the thermal terms by cosnθ
in the thermodynamic potential thus resembling a heavier quark mass which
yields the CEP and a first order transition. While the above consideration
is completely independent of the form of U , quantitative features such as
the value of dynamical quark mass which makes the transition first order
depend on the choice of U .
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Fig. 5. Left: Location of the deconfinement CEP (TCEP, µ
2
CEP) as a function of Gs.

Right: Phase diagram for Gs = 6.5GeV−2 which gives µ2
CEP > 0.

Figure 6 shows the behavior of |Φ| for various Gs at vanishing chemical
potential. One sees that |Φ| becomes steeper for larger Gs in both of U . The
case of Ulog has a discontinuity already at Gs = 6.5GeV−2 as mentioned
above. UPol, which has a smoother variation of |Φ| against T , eventually
approaches the pure gauge case for much larger Gs. At Gs = 25GeV−2,
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where the dynamical quark mass at T = 0 is around 2.5GeV, the first
order deconfinement transition is recovered. The origin of this difference
is the much weaker first order transition in UPol, which easily turns into
crossover when quarks heavier than 2.5GeV are put into the system. If
one characterizes a strength of the deconfinement transition by a gap of
the Polyakov loop ∆Φ at T = T0, one finds ∆Φ = 0.47 for Ulog and 0.072
for UPol. Since Gs determines the scale of the dynamical chiral symmetry
breaking, σ(T = 0), this result indicates an interplay of the two transitions
which have a unique scale, ΛQCD, in the case of QCD.
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It has been shown that a first order deconfinement phase transition also
emerges in the large Nc limit of the PNJL model [23]. This result has a com-
mon origin with the present study in a sense that taking large Nc limit makes
the system gluon dominated due to 1/Nc suppression of the quark contri-
bution, while large Gs thermally suppresses quarks in the chirally broken
phase. In our case, however, chiral transition temperature moves upward,
thus, there is a discrepancy between the deconfinement and chiral transition
temperatures, in contrast to the large Nc limit with a fixed GsNc in [23].

5. Summary

We have explored the deconfinement transition in the PNJL model at
imaginary chemical potential. We point out that the chiral condensate at
imaginary chemical potential, σ(θ), has a characteristic θ dependence due to
the deconfinement property which naturally arises from the statistical con-
finement feature of the model. While the confined phase is characterized by
a smooth cos 3θ dependence, the deconfined phase exhibits cos θ dependence
together with cusps at θ = π/3 (mod 2π/3) induced by the abrupt change
of the phase of the Polyakov loop (Roberge–Weiss transition). We introduce
a new dual parameter utilizing this θ dependence and compare it with the
Polyakov loop and the dressed Polyakov loop. Different sensitivities of these
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parameters to chiral and deconfinement transitions are found. Changing
the four fermion coupling constant, we found that an interplay between the
thermal quark contribution through the dynamical chiral symmetry breaking
and the Polyakov loop potential determines the location of the deconfine-
ment CEP at imaginary chemical potential. In particular, we found that the
deconfinement CEP can be located in the real chemical potential regime for
a Polyakov loop potential with a strong first order transition and large dy-
namical chiral symmetry breaking. We expect that these results are useful
for understanding of the QCD phase transition.
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