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We conclude our investigation on the QCD equation of state (EoS)
with 2 + 1 staggered flavors and one-link stout improvement. We extend
our previous study by choosing even finer lattices. These new results sup-
port our earlier findings. Lattices with Nt = 6, 8 and 10 are used, and
the continuum limit is approached by checking the results at Nt = 12.
A Symanzik improved gauge and a stout-link improved staggered fermion
action is taken; the light and strange quark masses are set to their physical
values. Various observables are calculated in the temperature (T ) interval
of 100 to 1000MeV. We also present our new results on flavor diagonal
and non-diagonal quark number susceptibilities, in a temperature regime
between 120 and 400MeV. In this case, lattices with Nt = 6, 8, 10, 12 are
used. We perform a continuum extrapolation of those observables for which
the scaling regime is reached, and discretization errors are under control.
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1. Introduction

The study of QCD thermodynamics and that of the phase diagram are
receiving increasing attention in recent years. A transition occurs in strongly
interacting matter from a hadronic, confined system at small temperatures
and densities to a phase dominated by colored degrees of freedom at large
temperatures or densities. A systematic approach to determine properties of
this transition is through lattice QCD. Lattice simulations indicate that the
transition at vanishing chemical potential is merely an analytic crossover [1].
This field of physics is particularly appealing because the deconfined phase
of QCD can be produced in the laboratory, in the ultrarelativistic heavy ion
collision experiments at CERN SPS, RHIC at Brookhaven National Lab-
oratory, ALICE at the LHC and the future FAIR at the GSI. The exper-
imental results available so far show that the hot QCD matter produced
experimentally exhibits robust collective flow phenomena, which are well
and consistently described by near-ideal relativistic hydrodynamics. These
hydrodynamical models need as an input an EoS which relates the local
thermodynamic quantities.

Most of the results on the QCD EoS have been obtained using improved
staggered fermions. This formulation does not preserve the flavor symmetry
of continuum QCD; as a consequence, the spectrum of low lying hadron
states is distorted. Recent analyses performed by various collaborations [2,3]
have pointed out that this distortion can have a dramatic impact on the
thermodynamic quantities. To quantify this effect, one can compare the
low temperature behavior of the observables obtained on the lattice, to the
predictions of the Hadron Resonance Gas (HRG) model.

A lot of effort is invested, both theoretically and experimentally, in or-
der to find observables which would unambiguously signal the QCD phase
transition. Correlations and fluctuations of conserved charges have been
proposed long ago to this purpose [4, 5]. The idea is that these quantum
numbers have a very different value in a confined and deconfined system,
and measuring them in the laboratory would allow to distinguish between
the two phases. Fluctuations of conserved charges can be obtained as linear
combinations of diagonal and non-diagonal quark number susceptibilities,
which can be calculated on the lattice at zero chemical potential [6, 3].

In the present contribution, we show the results of our collaboration on
some of these observables, with 2+1 staggered quark flavors, in a tempera-
ture regime between 100 and 1000 MeV for the EoS, and between 120 and
400 MeV for the susceptibilities. The light and strange quark masses are
set to their physical values. Lattices with Nt = 6, 8, 10, 12 are used.
Continuum extrapolations are performed for those observables for which
discretization errors are under control and the scaling regime is reached.
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2. Lattice framework

The lattice action is the same as we used in [7, 8], namely a tree-level
Symanzik improved gauge, and a stout-improved staggered fermionic action
(see Ref. [9] for details). The stout-smearing [10] reduces the taste violation:
this kind of smearing has one of the smallest taste violation among the
ones used so far in the literature, together with the hisq action recently
proposed by the hotQCD Collaboration [11,12]. Here we present our results
for thermodynamic observables: pressure (p), trace anomaly (I = ε − 3p)
and speed of sound (cs), for nf = 2 + 1 dynamical quarks. We also present
our most recent results on quark number susceptibilities [13]. We improve
our previous findings [9] by choosing finer lattices (Nt = 8, 10 and a few
checkpoints at Nt = 12). We work again with physical light and strange
quark masses: we fix them by reproducing the physical ratios fK/mπ and
fK/mK and by this procedure [3,8,14] we get ms/mu,d = 28.15. We checked
that there were no significant finite size effects by performing two sets of
simulations in boxes with a size of 3.5 fm and 7 fm around Tc. The left panel
of figure 1 shows the comparison between the two volumes for the normalized
trace anomaly I/T 4. Let us note here, that the volume independence in the
transition region is an unambiguous evidence for the crossover type of the
transition.

Fig. 1. Left: The trace anomaly on lattices with different spatial volumes:
Ns/Nt = 3 (gray/red band) and Ns/Nt = 6 (black/blue points). Right: I = ε− 3p
at three different T s as a function of 1/N2

t . Filled/open symbols represent results
with/without tree-level improvement.
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To decrease lattice artefacts, we apply tree-level improvement for our
thermodynamic observables: we divide the lattice results with the appropri-
ate improvement coefficients. These factors can be calculated analytically
for our action and, in case of the pressure, we have the following values
on different Nts: Nt = 6 gives 1.517, Nt = 8 gives 1.283, Nt = 10 gives
1.159 and Nt = 12 gives 1.099. Using thermodynamical relations one can
obtain these improvement coefficients for the energy density, trace anomaly
and entropy, as well as for the susceptibilities. The speed of sound receives
no improvement factor at tree level. Note, that these improvement coeffi-
cients are exact only at tree-level, thus in the infinitely high temperature,
non-interacting case. As we decrease the temperature, corrections to these
improvement coefficients appear, which have the form 1 + b2(T )/N2

t + . . ..
Empirically, one finds that the b2(T ) coefficient, which describes the size
of lattice artefacts of the tree-level improved quantities, is tiny not only at
very high temperatures, but throughout the deconfined phase. The right
panel of figure 1 illustrates at three temperature values (T = 132, 167 and
223MeV) the effectiveness of this improvement procedure. We show both
the unimproved/improved values of the trace anomaly for Nt = 6, 8, 10 and
12 as a function of 1/N2

t . The lines are linear continuum extrapolations
using the three smallest as. The a → 0 limit of both the unimproved and
the improved observables converge to the same value. The figure confirms
the expectations, that lattice tree-level improvement effectively reduces the
cutoff effects. At all three T s, the unimproved observables have larger cutoff
effects than the improved ones. Actually, all the three values of b2(T ), which
indicate the remaining cutoff effects after tree-level improvement, differ from
zero by less than one standard deviation.

The most popular technique to determine the EoS is the integral method.
For large homogeneous systems, p is proportional to the logarithm of the par-
tition function. Its direct determination is difficult. Instead, one determines
the partial derivatives with respect to the bare lattice parameters. Finally,
p is rewritten as a multidimensional integral along a path in the space of
bare parameters. To obtain the EoS for various mπ, we simulate for a wide
range of bare parameters on the plane of mu,d and β (ms is fixed to its phys-
ical value). Having obtained this large set of data we generalize the integral
method and include all possible integration paths into the analysis [15, 16].

An additive divergence is present in p, which is independent of T . One
removes it by subtracting the same observables measured on a lattice, with
the same bare parameters but at a different T value. Here we use lattices
with a large enough temporal extent, so it can be regarded as T = 0.
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3. Results

3.1. Equation of state

As we will see, different sets of data corresponding to different Nt nicely
agree with each other for all observables under study: thus, we expect that
discretization effects are tiny.

In the left panel of figure 2 we show the T dependence of ε − 3p for
nf = 2 + 1. We have results at four different as. Results show essentially
no dependence on a, they all lie on top of each other. Only the coarsest
Nt = 6 lattice shows some deviation around ∼ 300MeV. In the same figure,
we zoom in to the transition region. Here, we also show the results from
the HRG model: a good agreement with the lattice results is found up to
T ∼ 140MeV. One characteristic temperature of the crossover transition
can be defined as the inflection point of the trace anomaly. This and other
characteristic features of the trace anomaly are the following: the inflection
point of I(T )/T 4 is 152(4)MeV; the maximum value of I(T )/T 4 is 4.1(1),
whereas T at the maximum of I(T )/T 4 is 191(5)MeV.

Fig. 2. Left: The trace anomaly normalized by T 4 as a function of T on
Nt = 6, 8, 10 and 12 lattices. Right: p(T ) normalized by T 4 as a function
of the temperature on Nt = 6, 8 and 10 lattices. The Stefan–Boltzmann limit
pSB(T ) ≈ 5.209×T 4 is indicated. At T = 1000MeV p(T ) is almost 20% below this
limit.

In the right panel of figure 2 we show p(T ). We have results at three
different as. The Nt = 6 and Nt = 8 are in the T range from 100 up to
1000MeV. In the left panel of figure 3 we present the energy density. In
the right panel of figure 3 c2s (T ), the speed of sound is shown. One can
also read off the characteristic points of this curve: the minimum value of
c2s (T ) is 0.133(5); T at the minimum of c2s (T ) is 145(5)MeV; whereas ε at
the minimum of c2s (T ) is 0.20(4) GeV/fm3.
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Fig. 3. Left: The energy density normalized by T 4 as a function of temperature
on Nt = 6, 8 and 10 lattices. The Stefan–Boltzmann limit εSB = 3pSB is indicated
by an arrow. Right: The speed of sound squared as a function of temperature on
Nt = 6, 8 and 10 lattices. The Stefan–Boltzmann limit is c2s,SB = 1/3 indicated by
an arrow.

3.2. Susceptibilities

Quark number susceptibilities are defined as derivatives of the QCD pres-
sure with respect to the quark chemical potentials. In particular, we consider
the following ones

cuu2 =
T

V

∂2 lnZ
∂µu∂µu

∣∣∣∣
µi=0

, cus2 =cds2 =
T

V

∂2 lnZ
∂µu∂µs

∣∣∣∣
µi=0

, χs2 =
T

V

∂2 lnZ
∂µs∂µs

∣∣∣∣
µi=0

.

(1)
In the left panel of Fig. 4 we show the diagonal light quark susceptibility

as a function of temperature. Results are obtained on five different lattices:
Nt = 6, 8, 10 and two different spatial volumes for Nt = 12: 323 and 363.
This observable reaches approximately 90% of the Stefan–Boltzmann limit
already at T ∼ 400MeV. Notice that we do not perform a continuum ex-
trapolation: this observable is pion-dominated at small temperatures and
we need either finer lattices or an action which reduces even more the taste
violation, in order to reach the scaling regime and give the correct contin-
uum estimate. In the right panel of Fig. 4 we show the non-diagonal u − s
susceptibility, which measures the correlation between these different flavors.
As we can see, this observable has a peak in the vicinity of the phase tran-
sition, and tends to zero for infinitely large temperatures. This observable
is very noisy and before performing a continuum extrapolation we need to
reduce the errorbars for the Nt = 12 sets of data. A quantitative compari-
son between lattice results and predictions for a purely partonic QGP state
can give us information about the probability of bound states survival above
Tc: recent investigations in this direction [20] seem to indicate that there is
a certain temperature range above Tc, where bound states give a relevant
contribution to this observable.
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Fig. 4. Left: Diagonal light quark susceptibility as a function of temperature.
Right: Non-diagonal u − s susceptibility as a function of temperature. In both
panels, data are obtained on Nt = 6, 8, 10 and 12 lattices. Two different spatial
volumes are considered for the latter: 323 and 363. The band in the left panel is
the comparison with the Hard Thermal Loop predictions taken from Ref. [19].

In the left panel of Fig. 5 we show the strange quark number suscepti-
bility as a function of the temperature. For this observable we perform a
continuum extrapolation, as well as a comparison to the HRG model pre-
dictions. In the right panel of Fig. 5 we show, for Nt = 12, a comparison
between light and strange susceptibilities. We notice that the rapid rise as a
function of the temperature occurs at larger temperatures for strange quarks
than for light quarks.
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Fig. 5. Left: Diagonal strange quark susceptibility as a function of temperature.
Data are obtained on Nt = 6, 8, 10 and 12 lattices. Two different spatial volumes
are considered for the latter: 323 and 363. The gray (red) band indicates the con-
tinuum extrapolation. The black curve is the Hadron Resonance Gas (HRG) model
prediction. Right: Comparison between the light and strange quark susceptibility
as functions of the temperature, for Nt = 12.
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Baryon number susceptibility is defined as a linear combination of quark
number susceptibilities in the following way

χB =
1
9

(
2cuu2 + χs2 + 2cud2 + 4cus2

)
, with cud2 =

T

V

∂2 lnZ
∂µu∂µd

∣∣∣∣
µi=0

. (2)

We show our results for this observable in the left panel of Fig. 6: a contin-
uum extrapolation is performed, and compared to the HRG model results.
The agreement is very good. In the right panel of Fig. 6 we show the
baryon–strangeness correlator that was proposed in Ref. [21] as a diagnostic
of strongly interacting matter. It is defined as

CBS = 1 +
cus2 + cds2

χs2
. (3)

The continuum extrapolation is in good agreement with the HRG model
prediction for temperatures smaller than Tc.
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Fig. 6. Left: Baryon number susceptibility as a function of temperature. Right:
Baryon–strangeness correlator as a function of the temperature. In both panels,
results for Nt = 6, 8, 10 and 12 lattices are shown. Two different spatial volumes
are considered for the latter: 323 and 363. The gray (red) band is the continuum
extrapolated result, the black curve is the prediction of the HRG model.

4. Conclusions

We determined the equation of state and second order quark number
susceptibilities of QCD by means of lattice simulations. Results for the
nf = 2 + 1 flavor pressure, trace anomaly, speed of sound, light and strange
diagonal and non-diagonal susceptibilities were presented in figures, together
with baryon number susceptibilities and baryon–strangeness correlations.
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The results were obtained by carrying out lattice simulations at four differ-
ent as, at Nt = 6, 8, 10 and 12 in the T range of T = 100 . . . 1000MeV for
the EoS and T = 120 . . . 400MeV for the susceptibilities. In order to reduce
the lattice artefacts we applied tree-level improvement for all of the thermo-
dynamical observables. We found that there is no difference in the results at
the three finest lattice spacings. This shows that the lattice discretization
errors are not significant and the continuum limit can be reliably taken.
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