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In order to describe hot and dense matter in heavy-ion collisions as well
as potentially in hybrid stars theoretical models have to include hadronic as
well as quark degrees of freedom. We discuss a theoretical approach that
treats quarks and hadrons in a unified way. We compare model results
with lattice QCD calculations and discuss the phase diagram depending on
temperature and chemical potential. In an extended study we investigate
the SU(3) parity doublet model and show the properties of highly excited
strongly interacting matter in such an approach.
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1. Introduction

The study of strongly interacting matter under extreme conditions is
a central topic of modern nuclear and heavy-ion physics. Ultrarelativistic
heavy-ion collisions allow for the creation of a short-lived fireball with high
temperatures and, depending on the beam energy, varying net baryon den-
sity. On the other hand, compact stars have extremely dense cores, several
times the value of nuclear matter saturation density, at low temperatures
except for the first few seconds in the proto-neutron star phase, where tem-
perature of about 30MeV might be reached. For a description of these
physical systems within a single approach, a unified model of the hadronic
SU(3) degrees of freedom as well as quarks and gluons is needed. We dis-
cuss a model of this type, coupling a hadronic model with a PNJL type
formulation for quarks. Such an approach allows for a very good descrip-
tion of nuclear properties as the hadronic model has been developed for just
this purpose, and it automatically contains the correct degrees of freedom
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at low and high temperatures and densities, respectively. The fact that
the approach is unified and does not consist of two separate models for the
hadronic and quark world allows for first-order phase transition as well as
continuous cross-over phase transitions to be described.

2. The hadronic model

The hadronic SU(3) model incorporates the lowest SU(3) multiplets for
baryons and mesons (see [1,2] for details). In the case of mean field approx-
imation the equations read

L = Lkin + Lint + Lmeson , (1)

where Lint represents the interactions of the baryons and mesonic fields

Lint = −
∑
i

ψ̄i[γ0(giωω + giφφ) +m∗i ]ψi (2)

with the non-strange and strange vector mesons ω and φ. Here, we assume
isospin symmetric matter. In calculations of neutron stars, for example, also
isovector fields are taken into account. The effective baryon massm∗i is given
by

m∗i = giσσ + giζζ + δmi (3)

including couplings to the non-strange and strange scalar fields σ and ζ plus
a small explicit mass term. The mesonic self-interactions are contained in
Lmesons, which, in the case of the scalar fields, generates spontaneous chiral
symmetry breaking. Self-interaction terms of vector fields and an explicitly
chiral symmetry breaking term are included as well

Lmeson = −1
2
(
m2
ωω

2 +m2
φφ

2
)
− g4

(
ω4 +

φ4

4
+ 3ω2φ2 +

4ω3φ√
2

+
2ωφ3

√
2

)
+

1
2
k0

(
σ2 + ζ2

)
− k1

(
σ2 + ζ2

)2 − k2

(
σ4

2
+ ζ4

)
− k3σ

2ζ

+m2
πfπσ +

(√
2m2

kfk −
1√
2
m2
πfπ

)
ζ

+χ4 − χ4
0 + ln

χ4

χ4
0

− k4
χ4

χ4
0

ln
σ2ζ

σ2
0ζ0

. (4)

The dilaton field χ represents the gluon condensate in the system [2]. The
masses of the baryons are generated by the non-vanishing scalar condensates
in the vacuum.
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In Fig. 1 the phase diagram of the model is shown if one also includes
higher resonances. In this specific calculation the effect of these resonances
beyond the lowest baryonic octet were mimicked by a test resonance with a
specific mass and degeneracy that couples to the fields [3]. For a large vec-
tor coupling constant the phase diagram does not show a first-order phase
transition (except for the liquid–gas phase transition). If one wants to re-
produce the critical end point in the phase diagram as originally determined
in Ref. [5], a rather low value for the coupling gRV = 0.4 (in units of the
nucleon–omega vector coupling) is required. With this (purely hadronic)
model one can determine the isotropes for fixed entropy per baryon, corre-
sponding to different beam energies, starting from conditions of the fireball
estimated in a simple overlap estimate. In a more microscopic approach,
one can generate initial conditions for a given beam energy in a UrQMD
cascade calculation and then perform a hydrodynamical evolution with the
Equation of State from the model just described. Both approaches yield
similar results as shown in Fig. 2.

Endpoint lQCD
Fodor & Katz 2004

nuclear matter

Fig. 1. Phase diagram of the hadronic model including test resonance in the
T–µq plane. A line of first-order chiral phase transition with critical end point
is shown [4]. A lattice prediction for the end point is indicated in the plot [5].

While the figure shows that a beam energy of 160AMeV is best suited
to reach the predicted critical end point, in a microscopic calculation one
automatically has a distribution of temperature and chemical potentials in
the dynamics of the hydrodynamical evolution that can be extracted from
the propagated densities and energy densities. Therefore, also other beam
energies will sample the critical region. In quantitative terms this is shown
in the right panel of Fig. 2. The curves indicate the amount of the system
that has values Tc − 10MeV ≤ T ≤ Tc + 10MeV and µc − 10MeV ≤ µ ≤
µc + 10MeV as a function of time. One can see that a substantial volume is
in the critical region at energies distinctly below and above 160AGeV.
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Fig. 2. Left: Isentropes (full lines) for the evolution of the system with fixed S/A
ratio. The isentropes correspond to Pb+Pb beam energies (from right to left) of
5, 10, 40, 100, and 160AGeV, respectively. The lines with circles show the corre-
sponding results using UrQMD initial conditions and subsequent hydrodynamical
evolution (see [6]). Right: Volume of the system with T, µ parameters close to the
critical end point as function of collision time for different beam energies [6].

In a related investigation, we treat all particles of the particle data group
listings up to a mass of 2.6GeV in the same manner as the lowest multi-
plets [7]. The vector coupling is varied in a similar way as in Fig. 1. The
result shows a developing critical first-order chiral transition line at high
chemical potentials with decreasing coupling strength. Note that for large
values of Tc and small values of µc, respectively, the phase transition at
vanishing temperature occurs at lower densities as the liquid–gas transition,
with the result that the normal nuclear matter ground state does not exist
anymore.

Fig. 3. Phase diagram of the hadronic SU(3) model including all known hadronic
resonances up to 2.6GeV. The critical transition line vanishes with increasing rel-
ative vector interaction strength rv of the resonances.
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3. Quarks and hadrons

In addition, the model contains quark degrees of freedom that couple
linearly to the mean fields together with a Polyakov loop Φ field that serves
as the order parameter for deconfinement in the spirit of the PNJL model
for quarks [8,9]. We adopt a standard choice of an effective potential for the
Polyakov loop [9]

U = −1
2
a(T )ΦΦ∗ + b(T ) ln

[
1− 6ΦΦ∗ + 4

(
Φ3Φ∗3

)
− 3 (ΦΦ∗)2

]
(5)

with a(T ) = a0T
4+a1T0T

3+a2T
2
0 T

2, b(T ) = b3T
3
0 T , where the constants are

taken from [9]. In some calculations we considered the impact of changing
the temperature scale T0 from its quenched value of 270MeV to a smaller
value, in our case 220MeV.

The quarks and antiquarks couple to the effective Polyakov loop field Φ
as order parameter of the deconfinement phase transition like

Ωq = −T
∑
i∈Q

γi
(2π)3

∫
d3k ln

(
1 + Φ exp

E∗i − µ∗i
T

)
(6)

with a corresponding expression for the antiquarks [10]. In effect, we combine
a hadronic model with a quark PNJL model (a detailed discussion can be
found in [10]). In order to naturally suppress hadrons at high densities
and temperatures, we take into account an excluded volume correction in
a thermodynamically consistent manner as described in [10, 11, 12]. For an
alternative way to formulate the HQM model and to suppress hadrons at
high temperatures see [13].

Figure 4 shows the comparison of the model result for the energy den-
sity and pressure at vanishing chemical potential with results from lattice
simulations [14]. One can see a reasonable agreement, where at lower tem-
peratures the model calculation shows higher values, which is in accordance
with the fact that the lattice simulations most likely do not contain an ac-
curate description of the hadronic resonance gas, which dominates the low
T region.

Studying the phase structure of this quark-hadron (QH) model we ob-
tain the result as shown in the right panel of Fig. 4. Here the dependence
of the scalar condensate σ is shown as a function of temperature and quark
chemical potential. By construction, the first-order nuclear liquid–gas phase
transition is retained. In general, the chiral restoration develops smoothly
without a further critical end point. Also shown is the peak in the tempera-
ture derivative of the Polyakov loop indicating position of the deconfinement
transition as measured by Φ. As in the PNJL calculations this transition is
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Fig. 4. Left: Energy density and pressure normalized by T 4 as function of temper-
ature compared to lattice QCD results. Right: Values of the non-strange scalar
condensate as function of temperature and quark chemical potential. The liquid–
gas first-order transition line is indicated that is continued as cross-over for higher
temperatures. The values of the cross-over transition of the Polyakov loop are also
indicated as upper dashed line [10].

rather independent of µ. However, this behavior drastically changes, when
the Polyakov loop potential depends explicitly on the chemical potential as
we have discussed in [13].

A number of quark model calculations include relatively strong repulsive
quark vector interactions, for instance PNJL models with large vector cou-
pling generate relatively large Tc values for the critical end point. The same
is true for many hybrid star calculations stabilizing a large quark core. In
that case, a repulsive quark interaction stiffens the Equation of State gener-
ating higher neutron star masses. Using such parameterization for vanishing
or small chemical potential the behavior of the pressure as a function of µ
is substantially modified. This leads to very different values of the Taylor
coefficients cn defined by

cn(T ) =
1
n!
∂n
(
p(T, µB)/T 4

)
∂(µB/T )n

∣∣∣∣∣
µB=0

. (7)

Figure 5 illustrates the impact of the vector coupling on c2. One can see
that in the PNJL approaches as well as in the QH model an increase of the
coupling strongly suppresses c2 at higher temperature in clear contradiction
to lattice QCD [15,16].
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Fig. 5. Left: c2 Taylor expansion parameter as function of temperature in a PNJL
calculation. The value of the quark vector coupling is modified showing a substan-
tial change of c2 above Tc [16]. Right: Same as left figure performed in the QH
model. A similar behavior as in the PNJL model can be observed.

4. Results for the SU(3) parity model

In an analogous approach as in the previous section we study the behavior
of the quark-hadron model in the case of the parity-doubling realization of
chiral symmetry. We extend previous flavor-SU(2) investigations [17,18,19,
20, 21] to SU(3). Here we take into account the baryonic octet as well as
the octet of the baryons with opposite parity [22] following [23]. In the
case of the nucleon, an obvious candidate of a parity-doublet partner is the
N(1535). However, the actual state could also be a broad structure in the
corresponding spectral density. For the hyperons, candidates are Λ(1670)
and Σ(1750). In the Ξ channel the experimental situation is very unclear.
Within such an approach it is possible to define a mass-like term that couples
the two multiplets ϕ− and ϕ+ and their left- and right-handed components
(L/R), which reads schematically (for more details, see [22])

m0(ϕ̄−γ5ϕ+ − ϕ̄+γ5ϕ−) = m0(ϕ̄−Lϕ+R − ϕ̄−Rϕ+L − ϕ̄+Lϕ−R + ϕ̄+Rϕ−L) ,
(8)

where m0 represents a mass parameter.
After diagonalization the effective mass of baryon i reads

m∗i± =

√[(
g
(1)
σi σ + g

(1)
ζi ζ

)2
+ (m0 + nsms)2

]
± g(2)

σi σ ± g
(2)
ζi ζ , (9)

where the various coupling constants of baryons and scalar mesons g(j)
σi , g

j)
ζi

are connected via SU(3) relations [22]. ms is the strange quark mass and ns
denotes the number of strange quarks of the corresponding baryonic state.
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Varying the mass of the nucleonic parity partner one obtains the behavior
of the scalar condensate field σ as a function of chemical potential for T = 0
as shown in Fig. 6. There is a transition between a first-order transition for
masses larger than about 1460MeV and a smooth cross over at lower values.

Fig. 6. Left: Dependence of the scalar field as a function of baryochemical potential
at T = 0. Results for different values of the mass of the nucleonic parity partner
is shown. In result of lowering the mass, the chiral transition switches from first-
order to a cross-over [24]. Right: Behavior of the deconfinement parameter Φ and
the scalar condensate σ in the T–µq plane. Two first-order phase transition lines
with corresponding critical end-points can be observed. The marked regions are
discussed in the text.

When scanning the whole range of temperatures and chemical potentials
we obtain the phase structure of this approach, shown in the right panel of
Fig. 6. The region of the chiral restoration, where the value of the scalar
condensate ranges between 20 and 80 percent of its vacuum value is shown
in light gray (orange) and, correspondingly the area, where the Polyakov
loop has a value between 0.2 and 0.8 is shown in dark gray (green). There
are two first-order transition lines, the liquid–gas transition and a further
chiral transition, where baryonic parity partners and quarks begin to be
populated. The general structure of the phase transitions resembles the
behavior suggested in the quarkyonic picture of chiral and deconfinement
transitions [25]. At zero chemical potential the comparison to lattice results
indicates a reasonable agreement with the lattice data. In the upper left
panel of Fig. 7 the rise of the Polyakov loop value with temperature is
shown. Results for two different values of the potential parameter T0 are
shown. A lower value of T0 of 220MeV agrees quite well with the slow rise
of the Polyakov loop as observed on the lattice. The corresponding results
for the quark condensate are shown in the upper right panel. The lower
right panel depicts the so-called interaction measure ε − 3p divided by T 4.
The population of different particle species as a function of temperature
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can be seen in the lower-right panel. Since the temperature dependence of
the Polyakov loop, as measured on the lattice, indicates a slow transition
[26, 27], a larger temperature range with a mixed phase of hadrons and
quarks is a quite natural assumption. This is also the behavior observed in
our model with appreciable hadronic contributions up to temperatures of
around 300MeV.

Fig. 7. Results of the SU(3) parity model for vanishing chemical potential. In the
upper row the Polyakov loop and the scalar condensate are compared to lattice
results. The lower row shows the interaction measure (ε−3p)/T 4 and the densities
of baryons, mesons, and quarks as function of temperature.
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