
Vol. 5 (2012) Acta Physica Polonica B Proceedings Supplement No 3

FLUCTUATIONS OF CONSERVED CHARGES IN THE
POLYAKOV LOOP EXTENDED QUARK-MESON

MODEL AT FINITE BARYON DENSITY∗

V. Skokov

Physics Department, Brookhaven National Laboratory
Upton, NY 11973, USA

(Received January 2, 2012)

In this paper, we review the properties of baryon number fluctuations
close to the crossover transition at zero and finite baryon densities. We
argue on a phenomenological importance of high order cumulants at zero
baryon density. Main properties of the cumulants are illustrated beyond a
mean-field approximations in an effective low energy model of QCD.
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1. Introduction

From theory side, the thermodynamics of hot nuclear matter has been
explored numerically in the first principle lattice QCD (LQCD) calcula-
tions [1, 2, 3]. Complementary experimental studies of the hot and dense
matter created in heavy-ion collisions have been also carried out [4]. The
major goal of these investigations is to reveal the structure of the QCD phase
diagram and properties of nuclear matter in extreme conditions.

The LQCD results show that, at the physical pion mass, hot nuclear mat-
ter exhibits residual properties of both dynamical chiral symmetry breaking
and confinement at finite temperature. In the LQCD calculations, it has
been demonstrated that the transition between hadrons and quark/gluon
degrees of freedom is of crossover type. At finite baryon densities, progress
in LQCD calculations have been impeded by the sign problem. Nevertheless,
several attempts to sidestep the sign problem have been performed [5,6,7,8].
In some of the studies indications of the expected critical end point (CEP)
at finite values of the baryon chemical potential have been revealed [8].
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Experimentally, one would expect a drastic modification of measured
fluctuations of conserved charges [9, 10,11], e.g. the baryon number, if

(i) a significant part of a fireball created in a collision enters and lives long
enough in the critical region of the CEP to develop critical fluctuations;

(ii) the CEP is located close to the chemical freeze-out1 to guarantee sur-
vival of the fluctuations.

The latter, the proximity of the freeze-out to the CEP, is, however, not
known a priori. At present, from LQCD, we have very limited information
about the phase diagram of nuclear matter:

(1) the temperature of the crossover at zero baryon chemical potential Tpc

has been calculated [1, 3];

(2) the curvature of the transition line at zero baryon chemical potential κ
has been also found [12].

These results infer that the temperature of the transition at zero baryon
chemical potential is very close to the chemical freeze-out and that the phase
transition line and the chemical freeze-out line separate at non-zero chemical
potential.

When comparing theoretical expectation to the experimental data, an
additional complication arises from conservation laws, e.g. baryon number
conservation. Theoretically, the singular behaviour of the fluctuations is pre-
dicted in the grand canonical formulation of thermodynamics. Consequently,
in the experiment, one is required to simulate the grand canonical ensemble,
i.e. to study fluctuations in a restricted phase space. This is achieved by per-
forming cuts in rapidity and transfers momentum of the detected particles.
Ideally, the cuts should be fixed in such a way as to minimize the effects of
the conservation laws. In practice, one, however, has to find a compromise
between this and statistical significance of experimental measurements. As
was shown by transport model calculations, this tight compromise is very
challenging or even impossible in the low energy collisions [17]. If the CEP is
located at large baryon chemical potential and small temperature, it can be
studied only in low energy collisions. However, at low energies the conserva-
tion laws become increasingly important and even may “fake” non-monotonic
behaviour of the fluctuations expected in critical dynamics.

1 The chemical freeze-out line is determined from an analysis of experimental hadron
yields by the statistical Hadron Resonance Gas (HRG) model (see Ref. [13] for a
review). On the one hand, the HRG model provides a good description of relative
particle yields and the low order cumulants [14, 15]. On the other hand, the ther-
modynamics of the model is in a very good agreement with LQCD at µB = 0 and
temperature below the crossover temperature (see e.g. [16]).
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These considerations have motivated us to study properties of the baryon
number fluctuations in high-energy heavy-ion collisions or equivalently at
zero or small baryon chemical potential [18], where, as we mentioned ear-
lier, the chemical freeze-out line obtained from the analysis of experimental
particle yields and the crossover temperature calculated in LQCD is very
close to each other. As we will argue in the main body of this article, this
proximity leads to a significant modifications of the higher order cumulants
of the baryon number fluctuations. An experimental observation of these
effects may provide experimental evidence in favor of the transition, as well
as constraints on the relative position of the chemical freeze-out line and
the phase transition line at small chemical potential, including a piece of
experimental information on the phase transition temperature.

In this article, we show results obtained in the framework of the Polyakov
loop-extended quark-meson (PQM) model [19, 20, 21]. This model can re-
produce essential properties of the QCD thermodynamics obtained in the
LQCD already within the mean-field approximation. However, to correctly
account for the critical behavior and scaling properties near the chiral phase
transition one needs to go beyond the mean-field approximation and include
critical fluctuations and non-perturbative dynamics. This can be achieved
by using the methods based on the functional renormalization group (FRG).
The details on the FRG treatment of the PQM model are given in the Ap-
pendix.

2. Results and discussion

Fluctuations of conserved charges are quantified by the cumulants χB,Qn

[22]. For the grand canonical ensemble, the cumulants are proportional to
the generalized susceptibilities, derivatives of the pressure p = T 4p̂ with
respect to the corresponding chemical potential µB,Q = T µ̂B,Q

χB,Qn =
∂n

∂µ̂nB,Q
p̂ . (1)

The cumulants of conserved charges are sensitive probes of the chiral
phase transition. Potentially, they are useful for determining the position,
the order, and in the case of a second-order phase transition the universality
class of the corresponding phase transition. The net baryon number density
nB is discontinuous at a first-order transition, whereas the susceptibility χB2
and higher cumulants diverge at the critical end point [10] and at the spin-
odal lines of a first-order chiral phase transition in non-equilibrium [23]. In
the chiral limit and at non-zero chemical potential, all generalized suscep-
tibilities χBn with n > 2 diverge at the O(4) chiral critical line [22], while
at vanishing chemical potential this divergence is present only for higher or-
der cumulants with n ≥ 6. Since this fact has some importance for further
discussion, let us consider it in details.
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LQCD calculations have indicated that QCD in the chiral limit belongs
to the three-dimensional O(4) universality class [2]. Thus, based on the
universality argument we expect that properties of QCD close to the chiral
limit will be governed by O(4) dynamics. In the chiral limit of O(N) model,
the singular contribution to the thermodynamic potential is proportional to

Ωsing ∝ t2−α , (2)

where α is the critical exponent of the specific heat and the scaling variable t
is given by t = T/Tc − 1 + κ(µ/T )2. For the three dimensional O(N)
universality class with N > 1, the exponent α is negative 0 < α ≤ −1. From
Eqs. (1) and (2), one can find the most singular contribution to the (2n)th
cumulant of the conserved charge conjugated to the chemical potential µ

χsing
2n ∝ (2− α)(2− α− 1) · · · (2− α− n+ 1)t2−α−n . (3)

From Eq. (3) it follows, that at zero chemical potential, χ6 ∝ t−1−α is di-
vergent and changes sign at the transition for any N , except for the case of
the spherical model N →∞, where αN→∞ = −1 and the singular contribu-
tion to χ6 is t-independent. If the chiral symmetry is explicitly broken by
a finite pion mass, the cumulants do not diverge at the transition. Still the
underlying non-analyticity is reflected in the cumulants [18].

As it was demonstrated for zero chemical potential in LQCD and for non-
zero chemical potential in model calculations, close to the phase transition
the sixth order cumulant χ6 decreases and becomes negative [18] opposite
to the HRG model predictions of manifestly positive χ6. Since the fourth
order cumulant is unaffected by chiral critical phenomena at zero chemical
potential, it remains positive for small chemical potentials, as in the HRG
model. However, at larger densities, it picks up a non-trivial contribution
from higher order µ = 0 cumulants, as can be seen from the Taylor expansion

χB4 (µ̂) = χB4 (0) + 1
2χ

B
6 (0)µ̂2 +O

(
µ̂4
)
. (4)

The zeros order term in this expansion is always positive, while, as we argued
above, χB6 is negative close to the transition. Consequently, at non-zero
potential the second term can overcome the first one, leading to negative χB4 .
Thus, the fourth order cumulant and consequently the kurtosis (χB4 /χB2 )
may become negative close to the crossover transition, even if the critical
end point does not exist in the T–µB plane [18].

In Fig. 1, we show the dependence of the ratios RB4 = χB4 /χ
B
2 and RB6 =

χB6 /χ
B
2 on temperature for different chemical potential in the FRG PQM

model. At small temperatures T � mN , baryon number fluctuations are
dominated by the massive three-quark states with the baryon charge |qB| = 1
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Fig. 1. Scaling of the non-analytic contributions to χB4 (left) and χB6 (right) arising
from second and third derivatives of the singular part of the free energy. Shown
are results for different values of the symmetry breaking parameter h0h = mq/Tc;
h0 and z0 = h

1/βδ
0 /t0 are non-universal scale parameters. Note that for h0h = 1

the abscissa is the scaling variable z. The corresponding curve thus directly shows
the O(4) scaling function.

and the effective thermodynamic potential in the Boltzmann approximation
is given by

Ω(T → 0) = −f(T ) cosh(µB/T ) + g(T ) , (5)

where f(T ) and g(T ) are independent of the chemical potential and not
important for the current discussion. From Eq. (5), we obtain RB4 (T → 0) =
RB6 (T → 0) = 1 in an agreement with Fig. 1. On the other hand, at high
temperatures, thermodynamics is governed by almost massless single quark
states. In this case, the effective thermodynamical potential in the Stefan–
Boltzmann limit

Ω(T � Tpc) = −
NcNf

6
T 4

[
7π2

60
+
(µB

3T

)2
+

1
2π2

(µB
3T

)4
]

(6)

provides the following results for the ratios at zero baryon chemical potential
RB4 (T � Tpc) = 2/(3π2) and RB6 (T � Tpc) = 0. The model calculations
in Fig. 1 show that the change from the low temperature to high tempera-
ture regime happens in vicinity of the crossover T/Tpc ≈ 1. The ratio RB6
becomes negative close to the transition at zero chemical potential, while
RB4 is negative only for high chemical potentials in accordance with our
expectations.

In Fig. 2, we show negative region of the sixth order cumulant for baryon
and electric charge fluctuations χB,Q6 . In the case of the electric charge fluc-
tuations, it is essential to perform calculations beyond the mean-field approx-
imation taking into account charged pion contributions to χQn . In Fig. 1, we
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show the range of negative χQ6 , which is similar to that found for χB6 . Thus,
negative fluctuations of the sixth order moments of net baryon as well as
net electric charge fluctuations can be attributed to the crossover. Con-
sequently, the experimental observation of negative sixth order cumulants
in heavy ion collisions at RHIC and LHC would indicate that the chemical
freeze-out takes place in the vicinity of the chiral crossover transition [18].
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Fig. 2. Scaling of the non-analytic contributions to χB4 (left) and χB6 (right) arising
from second and third derivatives of the singular part of the free energy. Shown
are results for different values of the symmetry breaking parameter h0h = mq/Tc;
h0 and z0 = h

1/βδ
0 /t0 are non-universal scale parameters. Note that for h0h = 1

the abscissa is the scaling variable z. The corresponding curve thus directly shows
the O(4) scaling function.

3. Conclusion

In this paper, we review results of Refs. [18, 24, 25]. We show that the
fluctuations of the conserved charges are potentially capable of revealing
the structure of the phase diagram. The properties of the fluctuations are
quite general. They follow either from thermodynamic consistency or the
universal critical properties and thus can be directly extended to QCD.

We show that already at zero chemical potential, higher order moments
deviate from their hadron resonance gas values and may become negative
close to the crossover transition. Since, according to lattice QCD calcula-
tions, the transition temperature is close to the chemical freeze-out line, the
higher order cumulants play an important role for heavy-ion phenomenology.
If measured experimentally, negative higher order cumulants may serve as an
indication of the transition and reveal the relative position of the transition
and chemical freeze-out line.
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Appendix

Functional renormalization group for the PQM model

A formulation of the thermodynamics of the PQM model close to the
transition requires the use of non-perturbative methods. In an analysis of
electric charge fluctuations, it is of particular importance to account for
pion fluctuations beyond the mean-field approximation. Here, we employ
the functional renormalization group (FRG) to compute the thermodynamic
potential in the PQM model. This method involves an infrared regulariza-
tion of the fluctuations at a sliding momentum scale k, resulting in a scale-
dependent effective action Γk (see Ref. [26] for a review). The Polyakov loop
is treated as a background field, which is introduced self-consistently on the
mean-field level while the quark and meson fields, fluctuations are accounted
for by solving the FRG flow equations.

We follow the procedure used in Ref. [24] in the formulation of the flow
equation for the scale-dependent grand canonical potential density, Ωk =
TΓk/V , for the quark and meson subsystems at finite temperature and for
a non-vanishing electric charge chemical potential.

The thermodynamic potential is obtained by solving the flow equation

∂kΩk
(
Φ, Φ̄;T, µ

)
=

k4

12π2

{
1
Eπ

[
1 + 2nB(Eπ;T )

]

+
1
Eπ

[
1 + 2nB(Eπ − µπ;T )

]
+

1
Eπ

[
1 + 2nB(Eπ + µπ;T )

]
(7)

+
1
Eσ

[
1+2nB(Eσ;T )

]
−
∑
f=u,d

4Nc

Eq

[
1−N

(
Φ, Φ̄;T, µf

)
−N̄

(
Φ, Φ̄;T, µf

)] .

Here nB(E;T ) is the bosonic distribution function

nB(E;T ) =
1

exp(E/T )− 1
, (8)

µπ = eπµQ is the charge pion chemical potential and eπ = 1 the charge of
a π+. The pion and sigma energies are given by

Eπ =
√
k2 +Ω

′
k , Eσ =

√
k2 +Ω

′
k + 2ρΩ ′′k , (9)



884 V. Skokov

where the primes denote derivatives with respect to ρ = (σ2 + ~π2)/2 of
Ω = Ω + cσ. The fermion distribution functions N(Φ, Φ̄;T, µf ) and
N̄(Φ, Φ̄;T, µf )

N
(
Φ, Φ̄;T, µf

)
=

1 + 2Φ̄eβ(Eq−µf ) + Φe2β(Eq−µf )

1 + 3Φe2β(Eq−µf ) + 3Φ̄eβ(Eq−µf ) + e3β(Eq−µf )
, (10)

N̄
(
Φ, Φ̄;T, µf

)
= N

(
Φ̄, Φ;T,−µf

)
, (11)

are modified because of the coupling to the gluon field. Finally, the quark
energy reads

Eq =
√
k2 + 2g2ρ (12)

and the quark chemical potentials are defined by

µu = 1
3µB + euµQ , µd = 1

3µB + edµQ (13)

with eu = 2/3 and ed = −1/3.
The flow equation (7) is solved numerically with an ultraviolet cutoff

Λ = 1.2 GeV using the polynomial method (see Ref. [24] and references
therein), truncated at order N = 3.

In this scheme, the stationarity condition

dΩk
dσ

∣∣∣∣
σ=σk

=
dΩk

dσ

∣∣∣∣
σ=σk

− c = 0 (14)

is implemented in the flow equation. The initial conditions for the flow
are chosen to reproduce the following vacuum properties: the physical pion
mass mπ = 138 MeV, the pion decay constant fπ = 93 MeV, the sigma mass
mσ = 600 MeV, and the constituent quark mass mq = 300 MeV at the scale
k → 0. The symmetry breaking term, c = m2

πfπ, is treated as an external
field which does not flow. The flow of the Yukawa coupling g is neglected in
our studies.

The thermodynamic potential (15) does not contain contributions of
thermal modes with momenta larger than the cutoff Λ. In order to obtain
the correct high-temperature behavior of the thermodynamic functions, we
supplement the FRG potential with the contribution of the high-momentum
states [24], by including the flow of quarks interacting with the Polyakov loop
for momenta k > Λ.

By solving Eq. (7) one obtains the thermodynamic potential Ωk→0(σ =
σk→0, Φ, Φ̄;T, µ) = a0 as a function of the Polyakov loop variables Φ and Φ̄.
In the PQM model, the full thermodynamic potential Ω(Φ, Φ̄;T, µ), includ-
ing quark, meson and gluon degrees of freedom, is obtained by adding the
effective gluon potential U(Φ, Φ̄). The potential U(Φ, Φ̄) was chosen such
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that it reproduces the finite temperature lattice results of SU(3) Yang–Mills
theory [20]. Consequently,

Ω
(
Φ, Φ̄;T, µ

)
= Ωk→0

(
Φ, Φ̄;T, µ

)
+ U

(
Φ, Φ̄

)
. (15)

At a given temperature and chemical potential, the Polyakov loop vari-
ables, Φ and Φ̄, are then determined by the stationarity conditions

∂

∂Φ
Ω
(
Φ, Φ̄;T, µ

)
= 0 ,

∂

∂Φ̄
Ω
(
Φ, Φ̄;T, µ

)
= 0 . (16)
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