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The properties of strong-interaction matter are probed in ultra-relativi-
stic heavy-ion collisions. In the context of measurements of the elliptic flow
at RHIC and the LHC the shear viscosity is of particular interest. In this
presentation, we discuss recent results for η/s in hadronic matter at van-
ishing baryo-chemical potential within kinetic theory. Using the Nambu–
Jona-Lasinio model, special attention is paid to effects arising from the
restoration of spontaneously broken chiral symmetry with increasing tem-
perature.
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1. Introduction

In the exploration of the phase diagram of strong-interaction matter with
heavy ions dissipative effects continue to attract large attention. When de-
scribing the fireball evolution in viscous hydrodynamics and comparing it to
elliptic flow data from RHIC, a very small ratio of shear viscosity to entropy-
density, η/s, has been inferred [1, 2, 3]. Similar results have been obtained
recently from the ALICE measurements at the LHC [4]. These observa-
tions led to the conclusion that strong-interaction matter in the vicinity
of the quark-hadron transition behaves almost like a “perfect fluid”. Re-
cent hydrodynamical calculations of the elliptic flow [4] indicate that the
pT-dependence of the flow parameter v2 at RHIC and LHC energies is rather
insensitive to the viscous properties of the quark-gluon plasma (QGP) phase
and the hadronic phase seems to be more important (Fig. 1). This calls for
detailed understanding of the temperature evolution of η/s.
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Fig. 1. Assumed temperature dependence of η/s (left panel) and the resulting
hydrodynamical predictions for v2(pT) and their comparison to the STAR data
(right panel) [4].

At very low temperatures, the physics is dominated by a dilute pion gas
whose transport properties are governed by kinetic theory. The collision
term is uniquely specified by the current algebra results for the pion–pion
scattering length. As the temperature reaches the chiral restoration transi-
tion, however, strong medium modifications of the ππ-scattering amplitude
are expected due to the softening of the chiral σ-mode. For a quantita-
tive evaluation of these effects QCD-like theories such as the Nambu–Jona-
Lasinio (NJL) model are well suited. A particularly interesting feature of
this model is the fact that mesons do not exist as elementary degrees of free-
dom but emerge as composite as quark–antiquarks states. As a consequence,
the pion, which is a bound state below the chiral restoration temperature,
becomes a broad resonance at high temperatures. When constructing the
scattering amplitude for these objects, a controlled approximation scheme
has to be used, which is consistent with spontaneously broken chiral sym-
metry and the resulting Goldstone theorem. It is well known that such a
scheme is provided by the 1/N -expansion of the effective action, where in
our case N can be identified with the number of colors Nc.

2. The QCD phase diagram

Before discussing calculations for the η/s ratio for confined matter, let
us present a novel form of displaying the phase diagram of QCD matter,
i.e. matter, where the mean interparticle spacing is of the order of a few
femtometers. In this case the strong interaction is the main player in the
Equation of State. Rather than representing the phase diagram in terms of
temperature T and baryo-chemical potential µ, we choose to plot pressure
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vs. temperature. This has the advantage of a more direct comparison with
other substances such as water or liquid helium. The results are shown
in Fig. 2.
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Fig. 2. Phase diagram of strong-interaction matter in the pressure–temperature
plane. Due to relativistic effects there exists an unphysical region in which QCD
matter cannot exist in equilibrium.

The low-temperature regime is the realm of nucleonic matter, which may
undergo a first-order chiral restoration transition to chirally ordered and
superconducting quark matter at high pressure. These phases could be re-
alized in the interior of neutron stars. At high temperatures one encounters
quark-gluon matter, whose boundary to the unphysical region (µ = 0) is
quantitatively described by lattice QCD and a free pion gas at low T . When
raising the temperature the first-order chiral transition line ends in a chiral
critical endpoint (CEP) of second order. Current and future heavy-ion ex-
periments are indicated as well as the chemical freeze out. The latter has
been accurately determined from particle ratios using the hadron resonance
gas model, for which the pressure can be readily obtained from fits of the
freeze-out temperature and chemical potential [5].

3. Shear viscosity of the hadronic phase

It is well known that the low-temperature behavior of the shear viscos-
ity can be described in a Boltzmann–Ueling–Uhlenbeck (BUU) approach in
which the time evolution of the one-body phase-space density fi of a quan-
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tum particle, in our case a pion, is given by

d

dt
fπ (~x, ~p, t) = Cππ [fπ] , (1)

where the two-body collision integral Cππ includes the transition matrix
Mππ for ππ-scattering and the phase-space occupancy in the usual way. In
the Chapman–Enskog expansion [6] for fπ the resulting expression for η in
a pion gas reads (see e.g. Refs. [7, 8])

η =
1
5

4π
(2π)3

∞∫
0

dp
p4

Ep
f (0)
π

(
1 + f (0)

π

)
Bπ(p) , (2)

where f (0)
π is the equilibrium distribution and Bπ(p) contains Mππ. When

evaluating ππ-scattering in the two-flavor NJL model with the Lagrange
density [9]

L = q(i/∂ −m0)q + g
[
(qq)2 + (qiγ5~τq)2

]
, (3)

the lowest nontrivial order is given by the following two diagrams [10,11]

iMππ = + , (4)

where the full lines represent Hartree quarks,

, (5)

while the double lines denote mesons in the Random-Phase approximation,

. (6)

The resulting “in-medium” quark and meson masses are shown in the left
panel of Fig. 3. We have also indicated two characteristic temperatures [11],
which will be important for the later discussion: the “dissociation tempera-
ture”, Tdiss, where the σ-meson mass becomes degenerate with the in-medium
two-pion threshold as well as at the “Mott temperature”, TMott, where the
pion dissolves into a quark–antiquark pair.
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Fig. 3. Quark and meson masses (left panel) and scattering lengths (right panel) in
the two-flavor NJL model as functions of temperature. The thin lines in the right
panel indicate the Weinberg values of the vacuum scattering lengths, Eq. (8).

3.1. Scattering length

The scattering lengths in the isospin I channel are related to the scat-
tering matrix at threshold as

aI =
1

32πmπ
MI

ππ

(
s = 4m2

π

)
. (7)

To leading order in the pion mass their vacuum values are entirely dictated
by chiral symmetry and have been calculated by Weinberg in the 1960s [12],

a0
W =

7mπ

32πf2
π

, a2
W = − 2mπ

32πf2
π

, (8)

while the isospin-1 scattering length vanishes because of the total symmetry
of the bosonic wave function.

These values are well reproduced by the NJL model when the diagrams
(4) are evaluated in vacuum [10, 11]. However, as shown in the right panel
of Fig. 3, with increasing temperature there are important medium modifi-
cations [11]. In particular, the softening of the s-channel σ meson leads to a
sharp peak of a0 at Tdiss, which is reminiscent to the physics of a Feshbach
resonance in ultra-cold atomic gases. Similarly, a0 and a2 diverge at TMott

due to threshold singularities of the quark triangle and box diagrams.

3.2. Shear viscosity

In the left panel of Fig. 4, the shear viscosity is displayed as a function
of temperature, using different approximations for the scattering amplitude.
In the simplest case (dash-dotted line), both, momentum and temperature
dependence are neglected, andMI

ππ is obtained from Eq. (7) employing the
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Weinberg values (8) for the scattering lengths. When the latter are replaced
by the temperature dependent NJL-model results, we obtain the viscosity
indicated by the dotted line. Whereas at low temperature it is in good
agreement with the Weinberg result, η becomes very small in the vicinities
of Tdiss and TMott, because of the large scattering lengths. In these regions,
however, kinetic theory breaks down, since the mean interparticle spacing is
no longer large compared to the range of the interaction.
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Fig. 4. Left panel: shear viscosity η as a function of temperature for various ap-
proximations of the ππ cross section [13]. The dash-dotted line displays the result
obtained by using the Weinberg value for the ππ-scattering lengths, while for the
dotted line medium effects of the scattering lengths are included. The dashed line
shows results with the inclusion of the

√
s-dependence of the intermediate σ-meson

propagator. The full line includes the coupling of the s-channel σ meson to two-pion
states. Right panel: η/s and the fluidity measure of Ref. [14] for our most realistic
approximation (solid line of the left panel). The AdS/CFT bound (KSS) [15] is
also indicated.

Moreover, because of thermal motion, the approximation of the mo-
mentum dependent scattering amplitude by its value at threshold becomes
inappropriate when the temperature increases. In particular, the pole of the
s-channel σ-meson exchange (second diagram in (4)) can be reached at tem-
peratures well below the dissociation temperature, whereas at T = Tdiss,
when this pole is at threshold, most pion pairs have much higher mo-
menta. As a consequence, the sharp minimum at T = Tdiss gets washed out
and shifted to lower temperatures when the momentum dependence of the
σ-propagator is taken into account (dashed line). For simplicity, we still
neglect the momentum dependence of the quark triangles and boxes in our
calculations. Therefore, the steep drop of the viscosity near the Mott tem-
perature remains.

Another, not very realistic feature of this approximation, is the fact that
the σ meson is a sharp resonance in Random-Phase approximation. This
can be remedied by including a σ width from two-pion decay in the K-matrix
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approximation. One can show that this still fulfills the dilute gas limit, given
by the vacuum scattering lengths. The resulting shear viscosity is given by
the full line, which should be considered as the most reliable result of the
present study.

The corresponding values for η/s and the fluidity measure Lη/Ln =
ηn1/3/hcs [14], where h denotes the enthalpy and cs the speed of sound,
are displayed in the right panel of Fig. 4 as the dash-dotted and full line,
respectively. For the entropy density s, the particle density n, and the speed
of sound cs we took ideal-gas values, which is consistent with the dilute-gas
assumption of the BUU approach. It turns out that both fluidity measures
are very similar. After decreasing by several orders of magnitude at low
temperatures, the curves become rather flat in an intermediate temperature
regime, where we find η/s ≈ 3. As already mentioned, the steep drop near
the Mott temperature is most likely an artifact of neglecting the momentum
dependence of the quark triangles and boxes.

4. Discussion

The in-medium ππ cross section has been evaluated in the two-flavor
NJL model with the aim to include effects of chiral restoration with in-
creasing temperature. This leads to important modifications of η/s at finite
temperature, which render the viscous effects much smaller than it would
be expected from a simple vacuum extrapolation. On the other hand, the
results turn out to be extremely sensitive to the applied approximations,
and our “most reliable” model is certainly not the last word. In fact, except
for the region close to the Mott temperature, which should not be trusted,
our results are still more than one order of magnitude above the KSS bound
η/s = 1/4π [15]. Various improvements and extensions of the model should,
therefore, be performed:

In the ππ sector, we should include intermediate ρmesons, in order to get
a realistic description of the p-wave isovector channel. We should also include
the scattering of other particles, which are suppressed at low temperatures,
but can become important in the crossover region. In particular, we wish to
extend the model to three flavors and include kaons and η mesons. It would
also be interesting to include the scattering of quarks, which should become
important above the crossover temperature. Work in these directions is in
progress.

This work was supported in part by the Helmholtz International Center
for FAIR, the Helmholtz Institute EMMI and the BMBF grant 06DA9047I.
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