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We consider the pseudocritical temperatures for the chiral and decon-
finement transitions within a Polyakov-loop Dyson–Schwinger equation ap-
proach which employs a nonlocal rank-2 separable model for the effective
gluon propagator. These pseudocritical temperatures differ by a factor of
two when the quark and gluon sectors are considered separately, but get
synchronized and become coincident when their coupling is switched on.
The coupling of the Polyakov-loop to the chiral quark dynamics narrows
the temperature region of the QCD transition in which chiral symmetry
and deconfinement is established. We investigate the effect of rescaling the
parameter T0 in the Polyakov-loop (PL) potential on the QCD transition
for both the logarithmic and polynomial forms of the potential. While the
critical temperatures vary in a similar way, the width of the transition is
stronger affected for the logarithmic potential. For this potential the char-
acter of the transition changes from crossover to a first order one when
T0 < 210 MeV, but it remains crossover in the whole range of relevant T0

values for the polynomial form.
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1. Introduction

The QCD phase transition between highly excited hadronic matter and
the quark-gluon plasma is presently under experimental investigation at
ultra-relativistic heavy-ion collider facilities like the Relativistic Heavy-Ion
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Collider (RHIC) at the Brookhaven National Laboratory or the Large
Hadron Collider (LHC) at CERN, Geneva. Its theoretical description re-
quires methods to solve QCD at finite temperature in the highly nonpertur-
bative low-energy domain. At present, the only method to obtain ab initio
solutions of QCD in this domain is lattice QCD (LQCD).

Alternatively, one can start from QCD Dyson–Schwinger equations
(DSEs), apply a symmetry-preserving truncation scheme, and solve the
resulting equations for the Schwinger functions. In the recent years, this
approach has reached a new level of maturity (see, e.g., Refs. [1, 2, 3] for
reviews). This ongoing progress in DSEs also includes ab initio type of cal-
culations [4,5] pertaining to PL and related to other functional approaches.

For the purpose of this exploratory approach, we will restrict ourselves
to the model, where PL is coupled to the quark sector DSE (PDSE), and to
a rank-2 separable form of the effective gluon propagator [6].

In the present work, by analyzing the temperature behavior of the order
parameters in the model, the dynamically generated light and strange quark
masses as well as the PL variable, we find that the critical temperatures for
the chiral and the deconfinement transitions measured by the peaks in the
corresponding susceptibilities (defined here as the temperature derivatives
of the order parameters) coincide at the per mille level of accuracy. We
will discuss the effect of rescaling the critical temperature parameter T0 of
the PL potential [7, 8,9,10] once applications with a finite number of quark
flavors and a possible chemical potential are considered and how this affects
the width of the QCD transition region.

2. Separable PDSE model

2.1. Thermodynamical potential and order parameters

The central quantity for the analysis of the thermodynamical behavior
is the thermodynamical potential which in the PDSE approach is a straight-
forward generalization of the standard CJT functional [11, 12]

Ω(T )= U(Φ, Φ̄)−T Tr~p,n,α,f,D
[
ln
{
S−1
f (pαn, T )

}
−Σf (pαn, T ) · Sf (pαn, T )

]
,

(1)
where the full quark propagator for the flavor f = u, d, s,

S−1
f (pαn, T ) = S−1

f,0 (pαn, T )+Σf (pαn, T )

= i~γ · ~p Af
(

(pαn)2, T
)

+iγ4ωn Cf

(
(pαn)2, T

)
+Bf

(
(pαn)2, T

)
,(2)



Width of the QCD Transition in a Polyakov-loop DSE Model 927

is defined by the DSE for the quark self-energy Σ, see below. The Polyakov-
loop potential is first taken in the form [13]

Ulog

(
Φ, Φ̄

)
T 4

= −1
2a(T )Φ̄Φ+ b(T ) ln

[
1− 6Φ̄Φ+ 4

(
Φ̄3 + Φ3

)
− 3

(
Φ̄Φ
)2] (3)

with a(T ) = a0+a1(T0/T )+a2(T0/T )2 , b(T ) = b3(T0/T )3. The correspond-
ing parameters a0 = 3.51, a1 = −2.47, a2 = 15.22 and b3 = −1.75 are taken
from Ref. [13], where they have been adjusted to fit the pressure obtained
in lattice gauge theory simulations of SU(3) Yang–Mills theory. In most of
the literature on the PNJL model, the parameter T0 = 270 MeV has been
taken over for applications in QCD with Nf quark flavors, while following
Ref. [8] its dependence on quark flavors and chemical potential should be
invoked. Accordingly, for the case Nf = 2 + 1 discussed in the present work,
in [8] the value T0 = 187 MeV is suggested with an error margin of about
30 MeV. Applying the Matsubara formalism of finite temperature field the-
ory, the squared quark 4-momenta are to be replaced by (pαn)2 = (ωαn)2 +~p 2,
ωαn = ωn + αφ3, where ωn = (2n + 1)πT are the fermionic Matsubara fre-
quencies and the indices α = −1, 0,+1 specify the three quark colors and
their coupling to the parameter φ3 of the temporal gauge field.

In order to check the sensitivity to various parameterizations of the
Polyakov-loop potential, we will also try the polynomial parametrization
specified in [14].

For the effective gluon propagator in a Feynman-like gauge, g2Deff
µν(p−q)

= δµνD(p2, q2, p · q), we employ a rank-2 separable ansatz [6]

D
(
p2, q2, p · q

)
= D0F0

(
p2
)
F0

(
q2
)

+D1F1

(
p2
)

(p · q)F1

(
q2
)
, (4)

so that the quark propagator amplitudes are given by

Bf

(
(pαn)2 , T

)
= m0

f + bf (T )F0

(
(pαn)2

)
, (5)

Af

(
(pαn)2 , T

)
= 1 + af (T )F1

(
(pαn)2

)
, (6)

Cf

(
(pαn)2 , T

)
= 1 + cf (T )F1

(
(pαn)2

)
. (7)

In the present work, we will use the functions specified in [15, 16] which
satisfy the constraints F0(0) = F1(0) = 1 and F0(∞) = F1(∞) = 0. Their
functional form can be chosen such that the 4-momentum dependence of the
dynamical mass function M(p) = B(p)/A(p) and the wave function renor-
malization Z(p) = 1/A(p) is in good agreement [17] with LQCD simulations
of the quark propagator [18]. Models which employ a rank-1 separable ansatz
(see, e.g. [19, 20]) result in A(p) = Z(p) = 1 and miss an important aspect
of quark dynamics in QCD.
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The temperature-dependent gap functions af (T ), bf (T ), cf (T ) and φ3(T )
are obtained as solutions of the DSE for the quark self energy in rainbow-
ladder truncation as in Ref. [6], and correspond to minima of the thermo-
dynamical potential (1). Once the gap equations are solved for different
temperatures, one can extract the pseudocritical temperatures for chiral
and deconfinement transitions from the peak positions of the temperature
derivatives of the corresponding order parameters, the quark mass functions
mf (T ) = [m0

f + b(T )]/[1 + af (T )] and the Polyakov loop Φ(T ), respectively.
For a discussion of the quark mass function as an order parameter of the
chiral transition see, e.g. Refs. [21, 22,23].

3. Results and discussion

For the numerical calculations, we are using the same parameter set as
in Refs. [24, 16, 15], namely m0

u = m0
d = m0

q = 5.49 MeV, m0
s = 115 MeV,

D0Λ
2
0 = 219, D1Λ

4
0 = 69, Λ0 = 0.758 GeV, Λ1 = 0.961 GeV and p0 =

0.6 GeV.

3.1. Order parameters for chiral and deconfinement transition

In Fig. 1 (a), we show the resulting temperature dependence of the deriva-
tives of the quark mass being an order parameter of the chiral phase transi-
tion and of the Polyakov loop expectation value as an order parameter of the
deconfinement transition. The peak values are attained at the correspond-
ing pseudocritical temperatures for the chiral (Tχ) and deconfinement (Td)
transitions, respectively. In the right panel of Fig. 1 (a), we show the results
when the quark and gluon sectors are uncoupled. In this case, we have in
the light quark sector Tχ = 128 MeV, whereas Td = 270 MeV according to
the parametrization of the PL potential in the pure gauge sector. The value
obtained for Tχ is in the typical range found in the DSE approach [25].

At the same time, when coupling the PL potential to the chiral quark
sector, the width of the transition region collapses to a tiny temperature
interval around Tc, as is demonstrated in Fig. 1 (b).

Both effects of coupling the chiral quark sector to the PL, the synchro-
nization of the chiral and deconfinement transitions as well as the narrowing
of the width of the QCD transition region, are obtained in a similar way for
the polynomial PL potential.

The value obtained for the QCD transition temperature, Tc = 195 MeV
(193 MeV) for the logarithmic (polynomial) PL potential, is closer to recent
LQCD results than the one obtained in PNJL or rank-1 separable nonlocal
PNJL models but unsatisfactory for a quantitative description. Within the
framework of the PQM model, it has been suggested [8] to rescale the T0

parameter of the PL potential depending on the quark flavor content of the
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Fig. 1. (a) Quark mass susceptibilities (dashed/blue line: light flavors; dash-
dotted/red line: strange flavor) with coupling to the Polyakov loop (left panel)
and without it (right panel) as a function of the temperature. Note that without
coupling to the Polyakov loop the chiral transition temperature is unrealistically
low and the peak value for the light flavors is different from that for the strange
one. (b) The same as Fig. 1 (a), but as a function of the scaled temperature T/Tc

with Tc = 195 MeV (left panel) and Tc = Tχ = 128 MeV (right panel). Without
coupling to the Polyakov-loop Td = 2.11 Tc is outside the range shown.

system and the chemical potential. In Fig. 2 (a), we show the resulting tem-
perature dependence of the order parameters for chiral symmetry breaking
(the normalized mass function m(T )/m(0)) and for deconfinement (the PL
Φ(T )) for three values of T0. According to [8], the case T0 = 187 MeV
corresponds to Nf = 2 + 1 while T0 = 270 MeV is the value for the pure
gauge theory, where the deconfinement is a first order phase transition. The
coupling to the chiral quark dynamics changes the character of this transi-
tion to a crossover. Lowering the T0 parameter to 187 MeV changes both
deconfinement and chiral restoration to strong first order phase transitions!
This change of character happens at the critical value T0 = 210 MeV, also
shown in Fig. 2 (a).

In Fig. 2 (b), we summarize this finding by showing the dependence of
Tc on the T0 parameter of the PL potentials. For the logarithmic PL poten-
tial (3), the positions of first order transitions are characterized by the full
dots connected by a solid line, while the crossover transitions are given as
open dots connected by a dashed line. Two regions of linear dependence can
be identified when using the logarithmic PL potential: Tc = const + 0.30 T0

for T0 < 210 MeV and Tc = const + 0.40 T0 for T0 > 210 MeV. When using
the polynomial form of the PL potential, we find the linear dependence as
Tc = const+0.36 T0. The change in the character of the QCD transition from
a crossover for T0 > 210 MeV to a first oder transition for T0 < 210 MeV is
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Fig. 2. (a) Temperature dependence of the order parameters for chiral symmetry
breaking (m(T )/m(0), grey/blue lines) and for deconfinement (Φ(T ), black lines)
for different choices for the parameter T0 in the Polyakov-loop potential. (b) Pseu-
docritical temperature for the chiral restoration transition versus parameter T0 of
the Polyakov-loop potential in the logarithmic form (3) (black circles) and in the
polynomial form (open squares (blue)). For further details, see the text.

accompanied by a sudden change in slope at T0 = 210 MeV. It is remarkable
that the T0- rescaling introduced to account for a quark flavor dependence
of the PL potential when applied to the nonlocal separable PDSE model
considered here, results in an obvious contradiction with LQCD concerning
the character of the QCD transition: while in LQCD for Nf = 2 + 1 the
finite-T transition is a crossover [26, 27], the application of the suggested
reparametrization with the corresponding value T0 = 187 MeV leads in the
present model to a first order transition.

On the other hand, for the polynomial PL potential the transition is a
crossover for any of the considered values of T0. Fig. 2 (b) illustrates this by
the dashed line connecting the points depicted by squares.

4. Conclusions

The separable PDSE approach provides an essential improvement of the
chiral quark dynamics in PNJL models and nonlocal PNJL models which use
a rank-1 separable ansatz for the quark interaction kernel, since it provides a
running of both, the dynamical quark-mass function and the wave-function
renormalization in close agreement with LQCD simulations of the quark
propagator. It also provides the strong-coupling aspect of a dynamical con-
finement mechanism due to the absence of real quark mass poles.
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However, the investigation of the temperature dependence of the chi-
ral and deconfinement order parameters characterizing the (pseudo-)critical
temperature and the width of the QCD transition reveals also some in-
adequate aspects of the present level of description of this transition. The
critical temperature is too high and the transition region is too narrow when
compared with LQCD results. A rescaling of the PL-potential results in a
lower value for Tc, in accordance with recent LQCD results, but at the price
of a narrowing of the QCD transition region, for the logarithmic PL po-
tential even changing the character of the transition to a first order one, in
striking contradiction with LQCD.

We expect that going beyond the rainbow-ladder level by including
hadronic fluctuations beyond the mean field [10, 28, 30] will entail an im-
provement of the approach. As has been demonstrated recently by including
π and σ fluctuations in a consistent 1/Nc scheme [29,30], going beyond the
mean field will lead to a lowering of the chiral transition temperature. The
width of the transition region, however, appears as a sensitive constraint for
the choice of an appropriate functional form of the PL potential. Its possi-
ble dependence on the inclusion of hadronic correlations deserves a detailed
study. We plan to extend our work in this direction.

We thank R. Alkofer, S. Benić, M. Blank, K.A. Bugaev, H. Gies,
Yu.L. Kalinovsky, A. Krasnigg, J.M. Pawlowski, A.E. Radzhabov, K. Redlich
and B.-J. Schaefer for their discussions and comments to this paper. D.H. ac-
knowledges the financial support from the National Foundation for Science,
Higher Education and Technological Development of the Republic of Croa-
tia. D.K. acknowledges the partial support of the Abdus Salam ICTP.
D.H. and D.K. also acknowledge the support of the project No. 119-0982930-
1016 of the Ministry of Science, Education and Sports of Croatia. D.B. was
supported by the Russian Foundation for Basic Research under grant No.
08-02-01003-a and by the Polish Ministry of Science and Higher Education
(MNiSW) under grant No. NN 202 2318 37. This work was supported in
part by CompStar, a Research Networking Programme of the European Sci-
ence Foundation and by the Polish Ministry of Science and Higher Education
grant “COMPSTAR-POL” No. 790/N-RNP-COMPSTAR/2010/0.

REFERENCES

[1] R. Alkofer, L. von Smekal, Phys. Rep. 353, 281 (2001).
[2] C.D. Roberts, S.M. Schmidt, Prog. Part. Nucl. Phys. 45, S1 (2000).
[3] C.S. Fischer, J. Phys. G 32, R253 (2006).
[4] C.S. Fischer, Phys. Rev. Lett. 103, 052003 (2009).

http://dx.doi.org/10.1016/S0370-1573(01)00010-2
http://dx.doi.org/10.1016/S0146-6410(00)90011-5
http://dx.doi.org/10.1088/0954-3899/32/8/R02
http://dx.doi.org/10.1103/PhysRevLett.103.052003


932 D. Horvatić et al.

[5] C.S. Fischer, J.A. Mueller, Phys. Rev. D80, 074029 (2009).
[6] D. Blaschke et al., Int. J. Mod. Phys. A16, 2267 (2001).
[7] J. Braun, H. Gies, Phys. Lett. B645, 53 (2007).
[8] B.J. Schaefer, J.M. Pawlowski, J. Wambach, Phys. Rev. D76, 074023 (2007).
[9] B.J. Schaefer, M. Wagner, J. Wambach, Phys. Rev. D81, 074013 (2010).
[10] T.K. Herbst, J.M. Pawlowski, B.J. Schaefer, Phys. Lett. B696, 58 (2011).
[11] J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D10, 2428 (1974).
[12] R.W. Haymaker, Riv. Nuov. Cim. 14, (1991).
[13] S. Rössner, C. Ratti, W. Weise, Phys. Rev. D75, 034007 (2007).
[14] C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D73, 014019 (2006).
[15] D. Blaschke, D. Horvatic, D. Klabucar, A.E. Radzhabov,

arXiv:hep-ph/0703188.
[16] D. Horvatic, D. Blaschke, D. Klabucar, A.E. Radzhabov, Phys. Part. Nucl.

39, 1033 (2008).
[17] S. Noguera, N.N. Scoccola, Phys. Rev. D78, 114002 (2008).
[18] M.B. Parappilly et al., Phys. Rev. D73, 054504 (2006).
[19] D. Blaschke, M. Buballa, A.E. Radzhabov, M.K. Volkov, Yad. Fiz. 71, 2012

(2008) [Phys. At. Nucl. 71, 1981 (2008)].
[20] T. Hell, S. Roessner, M. Cristoforetti, W. Weise, Phys. Rev. D79, 014022

(2009).
[21] A. Bender, D. Blaschke, Y. Kalinovsky, C.D. Roberts, Phys. Rev. Lett. 77,

3724 (1996).
[22] D. Blaschke, A. Höll, C.D. Roberts, S.M. Schmidt, Phys. Rev. C58, 1758

(1998).
[23] A. Höll, P. Maris, C.D. Roberts, Phys. Rev. C59, 1751 (1999).
[24] D. Blaschke, Y.L. Kalinovsky, A.E. Radzhabov, M.K. Volkov, Phys. Part.

Nucl. Lett. 3, 327 (2006).
[25] M. Blank, A. Krassnigg, Phys. Rev. D82, 034006 (2010).
[26] Y. Aoki et al., Nature 443, 675 (2006).
[27] S. Ejiri et al., Phys. Rev. D80, 094505 (2009).
[28] V. Skokov, B. Stokic, B. Friman, K. Redlich, Phys. Rev. C82, 015206 (2010).
[29] D. Blaschke, M. Buballa, A.E. Radzhabov, M.K. Volkov, Nucl. Phys. Proc.

Suppl. 198, 51 (2010).
[30] A.E. Radzhabov, D. Blaschke, M. Buballa, M.K. Volkov, Phys. Rev. D83,

116004 (2011).

http://dx.doi.org/10.1103/PhysRevD.80.074029
http://dx.doi.org/10.1142/S0217751X01003457
http://dx.doi.org/10.1016/j.physletb.2006.11.059
http://dx.doi.org/10.1103/PhysRevD.76.074023
http://dx.doi.org/10.1103/PhysRevD.81.074013
http://dx.doi.org/10.1016/j.physletb.2010.12.003
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1103/PhysRevD.75.034007
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1134/S1063779608070095
http://dx.doi.org/10.1134/S1063779608070095
http://dx.doi.org/10.1103/PhysRevD.78.114002
http://dx.doi.org/10.1103/PhysRevD.73.054504
http://dx.doi.org/10.1134/S1063778808110161
http://dx.doi.org/10.1103/PhysRevD.79.014022
http://dx.doi.org/10.1103/PhysRevD.79.014022
http://dx.doi.org/10.1103/PhysRevLett.77.3724
http://dx.doi.org/10.1103/PhysRevLett.77.3724
http://dx.doi.org/10.1103/PhysRevC.58.1758
http://dx.doi.org/10.1103/PhysRevC.58.1758
http://dx.doi.org/10.1103/PhysRevC.59.1751
http://dx.doi.org/10.1134/S1547477106050086
http://dx.doi.org/10.1134/S1547477106050086
http://dx.doi.org/10.1103/PhysRevD.82.034006
http://dx.doi.org/10.1038/nature05120
http://dx.doi.org/10.1103/PhysRevD.80.094505
http://dx.doi.org/10.1103/PhysRevC.82.015206
http://dx.doi.org/10.1016/j.nuclphysbps.2009.12.011
http://dx.doi.org/10.1016/j.nuclphysbps.2009.12.011
http://dx.doi.org/10.1103/PhysRevD.83.116004
http://dx.doi.org/10.1103/PhysRevD.83.116004

	1 Introduction
	2 Separable PDSE model
	2.1 Thermodynamical potential and order parameters

	3 Results and discussion
	3.1 Order parameters for chiral and deconfinement transition

	4 Conclusions

