
Vol. 5 (2012) Acta Physica Polonica B Proceedings Supplement No 3

TRANSPORT PROPERTIES OF THE QGP
FROM A VIRIAL EXPANSION∗

Stefano Mattiello

Institute for Theoretical Physics, University of Giessen
35392 Giessen, Germany

(Received January 2, 2012)

In this work, we investigate the transport coefficients, i.e. shear and
bulk viscosity η and ζ, and heat conductivity κ of the quark-gluon plasma
within a virial expansion approach. We derive a realistic Equation of State
using a virial expansion approach which allows us to include the interactions
between the partons in the deconfined phase. From the interaction, we
directly extract the effective coupling αV for the determination of η, ζ
and κ. The shear viscosity and the heat conductivity show a pronounced
temperature dependence. Furthermore, we find that the bulk viscosity ζ
is strongly suppressed. Our results for the ratio η to the entropy density
s show a minimum near Tc, very close to the lowest bound η/s = 1/(4π)
and, furthermore, in line with the experimental value from RHIC as well
as with the lattice calculations.
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1. Introduction

Understanding the rich phase structure of quantum chromodynamics
for the density-temperature plane is a challenge for theoretical as well as
experimental high energy physics. From the experimental point of view,
heavy-ion collisions are the tool for such investigations. The experimental
findings of the heavy-ion collisions at the Relativistic Ion Collider (RHIC)
led to the announcement about the discovery of the nearly perfect fluidity
of the strongly-coupled quark-gluon plasma (sQGP) [1, 2]. Ideal hydrody-
namics seems to offer a good description for the experimental data for mod-
erate momenta, in particular, of the strong elliptic flow v2. Nevertheless,
ideal hydrodynamics gradually breaks down at larger impact parameter,
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at lower collision energy and away from midrapidity due of strong viscous
effects. Therefore, dissipative hydrodynamical calculations including a dy-
namic evaluation of the transport properties, i.e. shear viscosity η, bulk
viscosity ζ and heat conductivity κ within a model describing the strong
coupling properties of the QGP are mandatory. Recently, we have proposed
a generalization of the classical virial expansion approach to calculate the
QCD partition function in the partonic phase with an interaction inspired by
lattice calculations [3]. We have derived an Equation of State (EoS) for the
sQGP that describes well the three-flavor QCD lattice data [4] at nonzero
temperature as well as vanishing quark chemical potential (µq = 0). In this
approach, all thermodynamic quantities are based on an explicit parton in-
teraction in form of a potential. Therfore, it is also the ideal framework for
a consistent description of transport properties of the sQGP.

2. Virial expansion

The virial expansion formalism has been developed in a previous work [3],
where a detailed derivation of the partition function Z(T, V ), of all thermo-
dynamic quantities — such as pressure, entropy density, interaction measure
and sound velocity — and of the EoS of the QGP at vanishing and finite µq

has been presented. We achieve an expansion of lnZ in powers of the loga-
rithm of the partition function in the Stefan Boltzmann limit ζ = lnZ(0) [3].
All quantities can be calculated from the partition function using thermo-
dynamic relations. For the entropy density one obtains

s =
∂P

∂T
. (1)

Following Ref. [3], we use an effective quark–quark potential inspired by
a phenomenological model which includes non-perturbative effects from di-
mension two gluon condensates that reproduce the free energy of quenched
QCD very well [5]. The effective potential between the quarks explicitly
reads

V1(r, T ) =
(
π

12
1
r

+
C2

2NcT

)
e−M(T )r , (2)

where C2 is the non-perturbative dimension two condensate and M(T ) a
Debye mass estimated as

M(T ) =
√
Nc/3 +Nf/6 gT = g̃T , (3)

where we have neglected any scale dependence in the coupling constant. A
comparison with three-flavor lattice QCD calculations with almost physical
masses from Ref. [4] shows that a coupling parameter g̃ = 1.30 allows for a
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good description of all thermodynamic quantities in the temperature range
from 0.8 to 5 Tc. In Fig. 1 the entropy density s (divided by T 3) is shown
as a function of the temperature (expressed in units of the critical temper-
ature Tc) from the virial expansion approach using Eq. (4) (solid line) as
well as in the SB limit (dashed line). The symbols denote the lattice cal-
culations from Ref. [4]. Near Tc, the deviation of entropy density within
our virial expansion approach from the ideal gas limit are sizeable in the
confined phase.
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Fig. 1. (Color online) Entropy density s of the QGP as a function of the temper-
ature divided by T 3 from the virial expansion (solid line). For comparison the
corresponding SB limit is displayed by the dashed line. The lQCD results (open
squares) have been adopted from Ref. [4].

3. Transport properties

In an ultrarelativistic quark-gluon plasma, where the temperature T is
much larger than the constituent masses mi, the transport coefficient can
be calculated in the first approximation to the first Enskog order as [6, 7]

η =
4T
5σt

(
1 +

1
20
z2 +O

(
z4 ln z

))
, (4)

κ =
4

3σt

(
1− 1

4
z2 +O

(
z4 ln z

))
, (5)

ζ =
mz3

108σt

(
1 +O

(
z5 ln z

))
, with z =

m

T
. (6)
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The relevant transport cross section is given by

σt(ŝ) ≡
∫
dσel sin2 θcm = σ0 4ẑ(1 + ẑ) [(2ẑ + 1) ln(1 + 1/ẑ)− 2] , (7)

with the total cross section σ0(ŝ) = 9πα2
V(ŝ)/2µ2

scr. Here αV = αV(T )
and µscr are the effective temperature-dependent coupling constant and the
screening mass, respectively, and ẑ ≡ µ2

scr/ŝ. For simplicity, we assume σ0

to be energy independent and neglect its weak logarithmic dependence on ŝ
in the relevant energy range and set ŝ ≈ 17T 2.

In order to calculate a transport cross section with this interaction, the
coupling αV has to be extracted from V1. Following Ref. [8], we define the
coupling in the so-called qq-scheme,

αqq(r, T ) ≡ −12
π
r2
dV1(r, T )

dr
. (8)

The coupling αqq(r, T ) then exhibits a maximum for fixed temperature at a
certain distance denoted by rmax. By analyzing the size of the maximum at
rmax we fix the temperature dependent coupling, αV(T ), as

αV(T ) ≡ αqq(rmax, T ) . (9)

To investigate the importance of the different coefficients η, κ and ζ
we scale them by the appropriate power of the temperature in order to
obtain a dimensionless quantity. Therefore, we show in Fig. 2 the ratios
η/T 3 (red line), κ/T 2 (blue line) and ζ/T 3 (green line) as a function of
the temperature expressed in units of the critical temperature Tc. Several
features become evident:

(i) For the shear viscosity and the heat conductivity an increase with the
temperature is found for Tc ≤ T ≤ 3.5Tc.

(ii) At higher temperatures T ≥ 4Tc η/T
3 and κ/T 2 become constant. For

the shear viscosity also very different approaches show this functional
dependence: the strong quark-gluon plasma from AdS/CFT [10], the
quasiparticle approximation with differently modeled quark selfenergy
[11, 12] as well as the weak coupling estimate from Ref. [13, 14]. For
the heat conductivity that is in line with the results of perturbative
calculations [15], where it scales with the second power of the temper-
ature.

(iii) As already mentioned, the bulk viscosity is completely negligible in
comparison to the other coefficients. This is in agreement with other
calculations and justifies the omission of ζ in several hydrodynamical
and transport calculations [16].
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Fig. 2. (Color online) The scaled sheer viscosity η/T 3 (red line), heat conductivity
κ/T 2 (blue line) and bulk viscosity ζ/T 3 (green line) as a function of temperature
expressed in units of the critical temperature Tc.

Nevertheless, it is useful to look more in detail at the bulk viscosity in our
model. In Fig. 3 we show ζ as a function of temperature expressed in units
of the critical temperature Tc (solid/green line). To investigate the role of
the temperature dependent transport cross section, we compare it with the
results obtained using the constant cross section σ

(0)
t (dashed/green line).
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Fig. 3. (Color online) The bulk viscosity ζ (solid line) as a function of temperature
expressed in units of the critical temperature Tc. In comparison, the bulk viscosity
the temperature independent transport cross section σ(0)

t also as a function of the
scaled temperature.
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The calculation with the full cross section shows a different behavior as gen-
erally expected, because the suspected enhancement of the bulk viscosity is
missed. In contrast, the interplay between cross section and z3 leads to a
broad maximum around 3.2Tc. This is clearly a consequence of the temper-
ature dependence of σt: namely, using the constant value σ(0)

t = σt(Tc) for
the transport cross section, we find a decreasing behavior with increasing
temperature. This observation suggests the possibility of a maximum of the
bulk viscosity at Tc. In general, it is not surprising that our ultrarelativistic
model cannot describe the peak of ζ at the critical temperature. This max-
imum is a consequence of the hadronic correlations at Tc [17], that are not
included in this approach.

Finally in Fig. 4, we show the results for specific shear viscosity in com-
parison to other estimates. In the deconfined region, T/Tc ≥ 1, the solid/red
line shows the results for η/s as a function of temperature (in units of the
critical temperature Tc) within the virial expansion approach. Additionally,
the experimental point (square) from [18] and the lattice data [19, 20] (tri-
angles and full dots) are shown for comparison. In the confined phase the
dotted/red line shows the scaling η/s ∝ T−4 from the chiral perturbation
theory [21] combined with the requirement that η/s = 1/4π at Tc. Fur-
thermore, the range (0.8–1.5) for η/s from perturbative QCD (pQCD) from
Ref. [19] is depicted as a light grey/blue region and the lowest bound is
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Fig. 4. (Color online) The viscosity/entropy density ratio η/s as a function of
temperature expressed in units of the critical temperature Tc for T/Tc < 1 and
T/Tc > 1 from the virial expansion (red solid line) The lattice results are from
Ref. [19] (triangles) and from Ref. [20] (full dots). The dotted line, denoted by
χPT, stands for the results from the scaling behavior of the chiral perturbation
theory.
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indicated by the grey/orange area. At Tc our result for η/s ≈ 0.1 is very
close to the theoretical bound of 1/(4π). For temperatures 1.5Tc ≤ T ≤ 3Tc

the ratio η/s increases almost linearly until saturation at high temperatures
is achieved. Qualitatively, this increasing behavior of the specific viscosity
with the temperature is confirmed by lattice calculation. However, the large
error bars of the lattice data do not allow for a conclusive comparison. In
contrast, the experimental point is reproduced very well by our result. A
detailed analysis of the temperature dependence of our results for η/s —
using a Taylor expansion around the critical temperature — indicates the
existence of a minimum in η/s close to Tc.

4. Conclusion

We have performed an investigation of the transport coefficient in the
QGP in a dynamical way within kinetic theory using a generalized virial
expansion approach. We find a suppression of the bulk viscosity that justifies
the neglecting of ζ in several hydrodynamical calculations. Furthermore, our
numerical results give a ratio η/s ≈ 0.1 at the critical temperature Tc, which
is very close to the lower theoretical bound of 1/(4π).

I would like to thank S. Strauss and H. van Hees for useful discussions
and suggestions.
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