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The energy loss of a fast parton scattering elastically in a weakly cou-
pled quark-gluon plasma is formulated as an initial value problem. The
approach is designed to study an unstable plasma, but it reproduces the
well known result in the case of an equilibrium plasma. Contributions to
the energy loss due to unstable modes are shown to exponentially grow in
time. An unstable two-stream system is considered as an example.
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1. Introduction

When a highly energetic parton travels through the quark-gluon plasma
(QGP), it loses its energy due to elastic interactions with plasma con-
stituents. This is the so-called collisional energy loss which for the equi-
librium QGP is well understood, see the review [1] and the handbook [2].
The quark-gluon plasma produced in relativistic heavy-ion collisions, how-
ever, reaches the state of local equilibrium only after a short but finite time
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interval, and during this period the momentum distribution of plasma par-
tons is anisotropic. Collisional energy loss has been computed for such an
anisotropic QGP [3]. However, the plasma with anisotropic momentum dis-
tribution is unstable due to the chromomagnetic modes (for a review see [4]),
and the fact that unstable systems are explicitly time dependent as unstable
modes exponentially grow in time has not been taken into account in the
study [3].

Our aim is to formulate an approach where the energy loss is found
as the solution of an initial value problem. The parton is treated as an
energetic classical particle with SU(3) color charge. For the equilibrium
plasma we recover the known results but for the unstable plasma the energy
loss is shown to strongly depend on time. Our approach to the energy-
loss problem is similar to the method used earlier to study the momentum
broadening ¢ of a fast parton in anisotropic plasma [5]. Analogous methods
have also been used to study the spectra of chromodynamic fluctuations of
an unstable plasma [6] which, in particular, are responsible for the collision
integrals of transport equations [7].

Throughout the paper we use the natural system of units with ¢ = A =
kp = 1 and the signature of our metric tensor is (+, —, —, —).

2. General formula

We consider a classical parton which moves across a quark-gluon plasma.
Its motion is described by the Wong equations [8]

d:z::l‘7(—7') — wi(r), (1)
W) — g0 (r) B () ). ®
W) g pun(r) A () Qulr), )

where 7, (1), u*(7) and pH(7) are, respectively, the parton’s proper time,
its trajectory, four-velocity and four-momentum; F.:” and A% denote the
chromodynamic field strength tensor and four-potential along the parton’s
trajectory and Q% is the classical color charge of the parton; g is the coupling
constant and as = ¢g%/4r is assumed to be small. We also assume that the
potential vanishes along the parton’s trajectory i.e. our gauge condition
is u, (1) A (z(7)) = 0. Consequently, due to Eq. (3) the classical parton’s
charge Q.(7) is constant within the chosen gauge.
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The energy loss is given directly by Eq. (2) with 4 = 0. Using the
time t = ~7 instead of the proper time 7 and replacing the field strength
tensor Fj" by the chromoelectric E,(t,7) and chromomagnetic B,(t,r)
fields, Eq. (2) gives

dE(t)

7 = gQaEa(t7 T(t)) U, (4)

where v is the parton’s velocity. Since we consider a parton which is very
energetic, v is assumed to be constant and v2 = 1. Introducing the current
generated by the parton j,(t,r) = gQ®vé® (r — vt), Eq. (4) gives

dE(t) .

T = [ Bt ). )

Since we deal with an initial value problem, we apply to the field and
current not the usual Fourier transformation but the so-called one-sided
Fourier transformation defined as

flw, k) = / dt / Bre @R £t ), (6)
0

with the inverse

co+io

w 3 -
Ft,r) = / ;lﬂ/ (;17:;3 e—z(wt—k.r)f(w,k;)’ (7)

—o0+10

where the real parameter ¢ > 0 is chosen is such a way that the integral
over w is taken along a straight line in the complex w—plane, parallel to the
real axis, above all singularities of f(w, k). Using Eqgs. (6) and (7), Eq. (5)
can be rewritten

oco+io
dE(t) 4 do [ &k oy
—oo+io

where v = k - v.

The next step is to compute the chromoelectric field E,. Applying the
one-sided Fourier transformation to the linearized Yang—Mills equations we
get the set of equations familiar from electrodynamics

ik'e(w, k)l (w, k) = palw,k),  ik'Bi(w,k)=0,
ie " ER(w, k) = iwB(w, k) + B, (k),

ieijkk:jBéf(w, k) = jé(w, k) — iwsij(w, k:)Eg;(w, k) — Déa(kz) , (9)
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where p, is the color-charge density, the fields with the index O are ini-
tial values; the chromoelectric induction D, is expressed as D! (w,k) =
e (w, k)B4 (w, k) with €9 (w, k) being chromodielectric tensor which carries
all information about the medium. For an anisotropic plasma it equals

2 3 i k,j
ij _ i g/ d°p v af(p) _k:'v ki, kv
e w k) =0 o 2r)P3w—k-v+i0t OpF w o w |’

where f(p) is the momentum distribution of plasma constituents. The color

indices a, b are dropped as £(w, k) is a unit matrix in color space.
Although equations (9) strongly resemble those of electrodynamics, the

gluon contribution to the color charge density p, and color current j,, which

is a genuine non-Abelian effect, is fully incorporated in these equations.
Using Eq. (9), the field E:(w, k) is found to be

Bifw,k) = =i (57)7 (w, k) [wil(w, k) + Mk By, (k) — wD, (k) |
(10)
where
Y(w, k) = —Kk*6"7 + Kk + w?e¥ (w, k). (11)

Substituting the expression (10) into Eq. (8), we get the final formula

oo+
dE(t) : dw dgk —i(w—a)t —1\%J
_ a. i o i(w=w)t (5 12
dt Q" / omi ) (2m)3° (Z7)" (w. k) (12)
—oo+1io
a0 .
x [ngi?; + FUEBL (k) — wDi (k)

The integral over w is controlled by the poles of the matrix ¥ ~!(w, k) which
determine the collective modes in the system. Equivalently, these modes are
found as solutions of the equation det[X(w, k)] = 0. Equation (12) needs to
be treated differently for stable and for unstable systems.

3. Stable systems

When the plasma is stable, all modes are damped and the poles of
X ~1(w, k) are located in the lower half-plane of complex w. Consequently,
the contributions to the energy loss corresponding to the poles of X~1(w, k)
exponentially decay in time. The only stationary contribution is given by
the pole w = @ = k - v which comes from the current j,(w, k). Therefore,
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the terms in Eq. (12), which depend on the initial values of the fields, can
be neglected, and the energy loss of a fast parton in a stable plasma is

dE(t ;o d®k ij
0 = —iwen [Ge (577 @k, (13)
where the bar indicates that averaging over the parton’s color state has been
performed, and the factor Cp is 4/3 for a quark and 3 for a gluon.

When the plasma is isotropic, the dielectric tensor can be expressed in a
standard way through its longitudinal (e, (w, k)) and transverse (er(w, k))
components and the matrix X% (w, k) (11) can be easily inverted. The energy
loss (13) then equals

dE Ly / Bk © [ 1 k2v? — &2
A Il Py R e I

which corresponds to the standard energy loss due to soft collisions [2].

4. Unstable systems

When the plasma is unstable, the matrix X ~!(w, k) contains poles in the
upper half-plane of complex w, and the contributions to the energy loss from
these poles grow exponentially in time. After a sufficiently long time, the
parton’s energy loss will be dominated by the fastest unstable mode. For an
unstable plasma, the terms in Eq. (12), which depend on the initial values
of fields D and B, cannot be neglected, as these terms are amplified by a
factor exponentially growing in time. Using Egs. (9) the initial values can
be computed as

Di, (k) = —igQ we" (@, k) (571" (@, k)* (15)
Bl (k) = / ;L:% (k x Eq(w, k)" = —igQ ek (5" (@, k). (16)

Substituting Egs. (15) and (16) into Eq. (12) and averaging over the parton’s
colors as before, we obtain

__ oco+io

dE(t) .. ., / dw/ BE o 1]

—— 7 — g°Cnt* - A —i(w—o)t y-hW k

dt g RUY 27 (271')36 (27" (w. k)
—oo+1i0

w—w

x [ = (kjk;kf k:25jk> (@, k) +wo e (@,k) (£7Y)
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Equation (17) gives the energy loss of a fast parton flying across the unstable
plasma. The key point is that the presence of an unstable mode will produce
a time dependent exponential growth of the form elmw(k)t

5. Two-stream system

In order to calculate the energy loss, one must invert the matrix X% (w, k)
defined by Eq. (11) to substitute the resulting expression into Eq. (17). For
a general anisotropic system this is a tedious calculation, and, therefore, we
consider for simplicity the example of the two-stream system which has un-
stable longitudinal electric modes. We assume that the chromodynamic field
is dominated by the longitudinal chromoelectric field and take B(w, k) = 0
and E(w,k) = k(k - E(w,k))/k* Then, X7 (w, k) is trivially inverted as

1 k'K kik
wler(w, k) k? Ll ) = £ (w k) T E? (18)

and Eq. (17) simplifies to

(Y (w, k) =

dE(t ) Bl et G2 1 @
— = .
dt 9°Cr / / )3 w2er(w, k) k2 w—az+w (19)

—oo+1i0

Eq. (19) gives a non-zero energy loss in the vacuum limit when e, — 1.
Therefore, we subtract from the formula (19) the vacuum contribution, or
equivalently we replace 1/e1, by 1/ep, — 1.

The next step is to calculate er,(w, k). With the distribution function of
the two-stream system in the form

) = @) [§¥(p — q) + 0P (0 + @) . (20)
where n is the effective parton density in a single stream, one finds [6]

(w0 = w ()@ + w3 () (@ = (k) (w + w- (k)
(@ = (k- w)?)’

2

SL(w,k) = 5 (21)

where u = gq/FEq is the stream velocity, p° = ggn/QEq is a parameter
analogous to the Debye mass squared, and +w4 (k) are the four roots of the
dispersion equation ey,(w, k) = 0 which are

wi(k) = o5 |k (k-w)? +p (k% — (k- u)?)

k2

iu\/<k2—(k - u)2) (4k2(k - w)? + 2 (K2— (k- w)?)) | .(22)
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It is easy to see that 0 < w, (k) € R for any k. For k*(k - u)? > 2u?(k? —
(k - u)?), the minus mode is also stable, 0 < w_(k) € R, but for k- u # 0
and k%(k-u)? < 2p?(k? — (k- u)?) one finds that w_ (k) is imaginary which
is the well-known two-stream electric instability.

Strictly speaking, the stream velocity u given by the distribution func-
tion (20) equals the speed of light. However, the distribution (20) should
be treated as an idealization of a two-bump distribution with bumps of fi-
nite width. Then, the momenta of all partons are not exactly parallel or
antiparallel and the velocity u, which enters Eqgs. (21, 22), obeys u? < 1.

Equations (19) and (21) determine the energy loss of a parton in the two-
stream system. The integral over w can be computed analytically as it is de-
termined by the six poles of the integrand, located at w = +w, (k), Tw_(k),
w and 0. The remaining integral over k must be done numerically.

Performing the calculations we have redefined all dimensional quantities
by multiplying them by the appropriate power of 4 to obtain dimensionless
variables. We have chosen the following values of the parameters: g = 1,
lv| =1, Ju| = 0.9, Cr = 3. To take the integral over k, cylindrical coor-
dinates with the axis z along the stream velocity u have been used. Since
the integral appears to be divergent, it has been taken over a finite domain
such that —kpax < kp < kpax and 0 < kr < kpax. In Fig. 1, we show the
parton’s energy loss per unit length as a function of time for a parton flying
along the streams for kpax = 20, 50, 100. The energy loss strongly oscil-
lates with amplitude growing in time. However, the results depend on the

(gﬂ)'zd—E

dt
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Fig.1. The energy loss per unit length as a function of time for a parton flying
along the direction of streams. The lowest (green) curve corresponds to kmax = 20,
the middle (red) one to kmax = 50 and the most upper (blue) curve to kmax = 100.
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cut-off parameter knay: the magnitude of energy loss grows and the period
of oscillations shrinks when k.« increases. This ultraviolet sensitivity of
our results is not very surprising, as our approach is fully classical. In the
case of equilibrium (stable) plasma, the energy loss due to soft interactions
diverges logarithmically with kpax [1]. The divergence signals a necessity to
combine the classical contribution to the energy loss at small wave vectors
with the quantum contribution at higher ones. A quantum approach to the
parton energy loss in unstable plasma needs to be developed.

Although the two-stream system is not directly relevant to the quark-
gluon plasma which is produced in relativistic heavy-ion collisions, let us
comment on the potential interest of our study. Choosing u = 200 MeV,
which is a rough estimate of Debye mass in the QGP from nuclear colli-
sions, the units on the horizontal and vertical axis in Fig. 1 are, respectively,
fm and 200 MeV /fm. Since the parton’s energy loss in the QGP observed in
relativistic heavy-ion collisions is of the order of 1 GeV /fm, the magnitude
of the energy loss discussed here is certainly of phenomenological interest.

6. Conclusions

We have developed a formalism, where the energy loss of a fast parton
in a plasma medium is found as the solution of initial value problem. The
formalism allows one to obtain the energy loss in unstable plasma, where
some modes exponentially grow in time. In the case of stable plasma, one
reproduces correctly the standard energy-loss formula. As an example of
an unstable system we have studied a two-stream system. The energy loss
per unit length is not constant, as in an equilibrium plasma, but it exhibits
strong time dependence.

This work was partially supported by the Polish Ministry of Science and
Higher Education under grants N N202 204638 and 667/N-CERN/2010/0.
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