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MAGNETIC MOMENT OF COOPER PAIRS
IN MAGNETIZED COLOR SUPERCONDUCTIVITY∗
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We discuss how the ground state of the three-flavor color superconduct-
ing phase in the presence of a magnetic field is enriched with the presence
of an extra condensate related with the alignment of the magnetic moments
of Cooper pairs of charged quarks. The new condensate enhances the con-
densation energy of pairs formed by charged quarks. We point out possible
consequences of the new order parameter on the issue of the chromomag-
netic instability that appears in color superconductivity at moderate den-
sity and for the planned low-temperature/high-density heavy-ion collision
experiments.

DOI:10.5506/APhysPolBSupp.5.955
PACS numbers: 12.38.Aw, 12.38.–t, 24.85.+p

1. Introduction

Color superconductivity (CS) is the favored state of nuclear matter at
high density and low temperature [1]. It is expected that those extreme
conditions can exist in the high dense cores of compact stars. Compact stars,
on the other hand, can exhibit very strong magnetic fields, as for instance,
the so-called magnetars, which can have surface magnetic fields as large as
1014–1015 G and inner fields estimated of the order of 1018–1020 G [2].

An important feature of spin-zero color superconductivity is that al-
though the color condensate has non-zero electric charge, there is a linear
combination of the photon Aµ and a gluon G8

µ that remains massless [3],
Ãµ = cos θ Aµ−sin θ G8

µ. In the CFL phase the mixing angle θ is sufficiently
small (sin θ ∼ e/g ∼ 1/40). Thus, the penetrating field in the color super-
conductor is mostly formed by the photon with only a small gluon admix-
ture. The field Ãµ plays the role of an in-medium or rotated electromagnetic
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field, as the color condensate is neutral with respect to the corresponding
rotated charge. The unbroken Ũ(1) symmetry corresponding to the long-
range rotated photon is generated by Q̃ = Q×1+1×T8/

√
3, where Q is the

conventional electromagnetic charge of quarks and T8 is the 8th Gell-Mann
matrix. Using the representation of matrices Q = diag(−1/3,−1/3, 2/3)
for (s, d, u) flavors and T8 = diag(−1/

√
3,−1/

√
3, 2/
√

3) for (b, g, r)
colors, the Q̃ charges of different quarks are (in units of ẽ = e cos θ)
(0, 0,−, 0, 0,−,+,+, 0) corresponding to (sb, sg, sr, db, dg, dr, ub, ug, ur).

The less symmetric realization of the CFL pairing that occurs in the pres-
ence of a magnetic field, is known as the Magnetic CFL (MCFL) phase [4].
Similarly to the CFL phase [3], the MCFL has a locking between flavor and
color transformations, but unlike the CFL, where the symmetry breaking
pattern is SU(3)C×SU(3)L×SU(3)R×U(1)B → SU(3)C+L+R, in the MCFL
the symmetry breaking pattern is SU(3)C × SU(2)L × SU(2)R × U(1)B ×
U(−)(1)A −→ SU(2)C+L+R. Both phases are similar in that they lock color
and flavor and have no Meissner effect for an in-medium magnetic field. How-
ever, they have important differences too. The MCFL has five Goldstone
bosons, all of which are neutral with respect to the rotated charge. This
is in contrast with the CFL phase that has nine Goldstone bosons, some of
which are charged. Hence, in the MCFL phase, as well as in the CFL one, the
fermion excitations are gapped, and the gluon fields acquire masses thanks to
the Meissner–Anderson–Higgs mechanism, but the symmetry breaking that
gives rise to MCFL leaves a smaller number of Nambu–Goldstone fields, all
of which are neutral with respect to the rotated electric charge [4,5]. Hence,
the MCFL phase behaves as an insulator, as it has no low-energy charged
excitations at zero temperature.

In the MCFL phase the symmetry reduction is also manifested in the fact
that the ground state is characterized by two antisymmetric gaps∆ and∆H ,
instead of just one, as in the regular CFL case. Even though all the diquarks
are neutral with respect to the rotated electromagnetic charges, they can
be formed either by a pair of neutral or by a pair of charged quarks with
opposite rotated charges. As shown in [4], the gap ∆ only gets contributions
from pairs of neutral quarks, while ∆H has contributions from both charged
and neutral quarks, thus it can directly feel the background field through
the minimal coupling of the charged quarks with H̃. At fields large enough
that only the lowest Landau level (LLL) is occupied, the field substantially
modifies the density of states of the charged quarks and the energy gap ∆H

becomes significantly enhanced by the penetrating field [4]. At moderate
magnetic fields (henceforth when we say magnetic field, we actually mean
the rotated magnetic field) the energy gaps exhibit oscillations with respect
to ẽH̃/µ2 [6], owed to the de Haas–van Alphen effect.
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Recently, it was also found that in the MCFL phase a new condensate
has to materialize [7]. The new condensate is associated with the mag-
netic moment of the Cooper pairs. It should be noticed that the Cooper
pairs formed by charged quarks have a non-zero magnetic moment, since
the quarks in the pair not only have the opposite charge but also opposite
spin. Hence, as found in Ref. [7], the magnetic moment of this kind of pairs
leads, in principle, to a non-zero average magnetic moment for the system,
which in turn would be reflected in the existence of an extra condensate ∆M

in addition to the ∆ and ∆H gaps. We will concentrate in this report on
the mechanism behind the generation of this new condensate.

The presence of a magnetic field breaks the spatial rotational symmetry
O(3) to the subgroup of rotations O(2) about the axis parallel to the field.
This symmetry breaking opens new attractive pairing channels through the
new Fierz identities that were not available in the CFL phase [7]. One of
these channels has Dirac structure ∆M ∼ Cγ5γ

1γ2. A condensate with this
structure corresponds to a magnetic moment condensate. Because it does
not break any symmetry that has not already been broken by the gaps ∆
and ∆H , a magnetic moment condensate is not symmetry-protected and, in
principle, should exist.

2. Gap structure of the MCFL phase

An external magnetic field (assumed here to be along the z-direction)
introduces a normalized tensor F̂µν = F̂µν/|H̃|, with µ, ν = 1, 2. Once this
extra tensor is available in the theory, the metric tensor can be separated into
transverse gµν⊥ = F̂µρF̂ νρ and longitudinal gµν‖ = gµν−gµν⊥ components. Next,
the finite density introduces yet another normalized vector in the theory, the
four-velocity uµ, which in the rest frame reduces to uµ = (1, 0, 0, 0). With
these structures, the four-fermion interaction term in the system Lagrangian
density

Lint = −G
(
ψ̄Γ aµψ

) (
ψ̄Γµa ψ

)
, (1)

with quark-gluon vertex Γ aµ = γµλ
a (where λas are the Gell-Mann matrices

for color SU(3) group), has Dirac contraction given by γµγµ = [auµuν +
bg⊥µν + c(g‖µν − uµuν)]γµγν . Hence, one can write in the rest frame the four-
fermion interaction (1) as three distinct terms

Lint = − gE
(
ψ̄γ0λ

aψ
) (
ψ̄γ0λ

aψ
)
− g⊥M

(
ψ̄γ⊥λaψ

) (
ψ̄γ⊥λ

aψ
)

− g3
M

(
ψ̄γ3λaψ

) (
ψ̄γ3λ

aψ
)
. (2)
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Using a Fierz transformation (see Appendix A of Ref. [7]), one can verify
that the breaking of the Lorentz and rotational symmetries give rise to
new particle–particle channels of interaction, and, in particular, to (γ5σabC)
(Cσabγ5) (with C = iγ2γ0 and σab = 1

2 [γa, γb], where a, b = 1, 2), which is
the one that can lead to a magnetic-moment condensate along the z-axis
∆M = 〈ψTCΣ3γ5ψ〉, with Σ3 = σ12, being the spin operator.

It will be natural to expect that only diquark pairs formed by charged
quarks with opposite rotated charges and opposite spins, so having a net
magnetic moment, will contribute to the magnetic-moment condensate
∆M = 〈ψTCΣ3γ5ψ〉. Then, because of the symmetric nature of σabγ5C
under transposition in Dirac, this condensate will be a spin-1 condensate
symmetric in Dirac. Second, because we want to guarantee the strongest
attractive channel, we choose it to be antisymmetric in color. Finally, to
ensure the total antisymmetry required by Pauli principle, it should be sym-
metric in flavor. Basing on this considerations, we proposed in [7] that the
gap matrix in the presence of a magnetic field takes the form

Φαβij = ∆εαβ3εij3 +∆H

(
εαβ1εij1 + εαβ2εij2

)
+∆M

[
εαβ1 (δi2δj3 + δi3δj2) + εαβ2 (δi1δj3 + δi3δj1)

]
, (3)

where α, β and i, j denote the color and flavor indices respectively.
The magnetic-moment condensate gap ∆M is different from the case of

the conventional gaps ∆ and ∆H , which are antisymmetric in both color
and flavor. We can also check that the gap structure (3) satisfies the same
symmetry than that of the MCFL ansatz [4]. That is, the SU(2)C+L+R

symmetry, which requires the invariance of the gap Φαβij under simultaneous
flavor (1↔ 2) and color (1↔ 2) exchanges.

It is also important to point out that the magnetic-moment gap, being
symmetric under transposition in Dirac, has to be a spin-1 condensate. As
shown in Appendix B of Ref. [7], the specific spin-1 condensate, we are con-
sidering, has a zero-spin projection (MS = 0) along the field direction. Thus,
it corresponds to a symmetric wave function associated to pairs formed by
quarks with opposite charges and spins, and consequently with net magnetic
moment different from zero.

3. Gap equations and numerical solutions

The system free-energy in the zero-temperature limit is

Ω = −
∫
Λ

d3p

(2π)3
1
2

2∑
j=1

|εj | −
n eB∑
l=0

∫
Λ

dp2dp3

(2π)3
|εc|+

∆2 + 2∆2
H + 2∆2

M

G0
, (4)
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where Λ is the energy cutoff of the NJL effective theory and n eB = I[Λ2/2ẽB̃],
with I[...] denoting the integer part of the argument. In (4), εj and εc are
the energy modes of the neutral quarks and charged quarks, respectively,
given by ε1 = ±

√
(p± µ)2 +∆2, with degeneracy (d = 6) and

ε2 = ±
[
2
(
∆2
H +∆2

M

)
+

1
2
∆2 +

(
p2
3 + p2

⊥
)

+ µ2

±1
2

√
∆2
a∆

2
b + 16

[
2∆2

Mp
2
⊥ + µ2

(
p2
⊥ + p2

3

)]
± 8µ

√
∆2
b

(
∆2
ap

2
3 +∆2p2

⊥
)]1/2

,

(5)

for neutral quarks with degeneracy (d = 2). In (5), we defined ∆2
a = ∆2 +

8∆2
M and ∆2

b = ∆2 + 8∆2
H The dispersion relations for charged quarks in

higher LLs (l ≥ 0) are

εc=±
√

2ẽB̃l+∆2
M+∆2

H+µ2+p2
3 ± 2

√
2ẽB̃l

(
∆2
M+µ2

)
+(µp3 ±∆M∆H)2 .

(6)
with degeneracy (d = 4) and p2

⊥ = p2
1 +p2

2 defined. We want to call attention
to the double sign in front of ∆M in (6). This is reflecting the breaking of
the spin degeneracy for the higher LL modes of the charged quasi-particles
due to the presence of the magnetic-moment condensate ∆M . Hence, the
dispersion relation for the LLL cannot be the limit (l = 0) of (6), since the
LLL has not spin degeneracy (see Appendix C in [7]).

A stable phase must minimize the free energy with respect to the vari-
ation of the three gap parameters, ∆, ∆H and ∆M . This gives rise to the
gap equations

∂Ω

∂∆
=

∂Ω

∂∆H
=

∂Ω

∂∆M
= 0 . (7)

These gap equations are quite complicated, even in the strong-magnetic-field
limit where only the contribution from the LLL is important, and can only
be solved numerically.

From the graphical representation of ∆M in Fig. 1, it can be noticed
that its value remains relatively small up to magnetic-field values of the
order of µ2. This can be explained taking into account that mainly the
Cooper pairs formed by particles in the LLL contribute to the magnetic
moment condensate. Hence, the increase of ∆M at ẽH̃ ' µ2 takes place
when the LLL is most populated.
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Fig. 1. The three gaps of the MCFL phase as a function of ẽH̃/µ2 for µ = 500MeV.
They are scaled with respect to the CFL gap ∆0 = 25MeV.

The difference found between the other ∆′s gaps and ∆M is also in
agreement with the fact that the induced expectation value of the magnetic
moment is a quantity purely generated by the magnetic field (i.e. ∆M = 0 at
H̃ = 0). On the other hand, taking into account that the relevant scale for
the generation of the other ∆′s gaps is the energy at the Fermi surface (i.e.
the chemical potential), then, only when the magnitude of the magnetic field
is as large as the chemical potential, the induced average magnetic moment
becomes as large as the other gaps. Another important consequence of the
generation of the average magnetic moment is that its presence strengthens
the gap∆H in the sufficiently strong-magnetic-field region, as can be checked
by comparing our results in Fig. 1 with those of Ref. [6].

This last fact makes the new parameter ∆M of particular relevance for
the potential realization of the MCFL phase in the core of magnetars. Any
effect that can augment the effective gap magnitude will contribute to stabi-
lize the phase by pushing the emergence of the chromomagnetic instability
to smaller regions of densities. Since magnetars have the strongest surface
fields, they should also have the strongest fields in the core, so they are
the best candidates for the realization of the magnetic CFL phase stud-
ied in this paper. The larger value of the gap ∆H at strong fields will be
also reflected in a larger critical temperature for this color superconduct-
ing phase, a property that opens yet another possibility for the realization
of the MCFL state because the conditions of high densities, low temper-
atures, and strong magnetic fields will likely coexist in the planned low-
temperature/high-density heavy-ion collision experiments at NICA@JNIR,
CBM@FAIR and low-energy RIHC [8].
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