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Motivated by lattice QCD studies, we investigate the RW transition
endpoint at imaginary chemical potential in a two-flavor PNJL model. We
focus on the quark-mass dependence of the endpoint using different forms
of the Polyakov-loop potential.
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1. Introduction

At imaginary chemical potential, QCD has an interesting symmetry,
known as the Roberge–Weiss (RW) symmetry [1]: As a remnant of the
Z3 symmetry of the pure SU(3) gauge theory, certain shifts in the imag-
inary chemical potential µ = iθT can be undone by a Z3 transformation
leading to a periodicity of θ → θ + 2πk/3 with integer k in thermodynamic
quantities like the pressure. At large temperatures, the system undergoes
a first-order transition jumping between different Z3 sectors when crossing
θ = (2k + 1)π/3 for fixed temperature. Due to the periodicity, θ-even
quantities show a cusp, whereas θ-odd quantities have a jump. For low
temperatures this transition is a crossover. In between, there must be an
endpoint of the RW transition which can be of first or second order. If the
transition along θ = π/3 ends in a first-order transition, there must be first-
order lines departing from it, implying that the endpoint is a triple point.
As first-order phase transitions and second-order endpoints might influence
the phase structure at real chemical potential, this warrants further studies.

Recent lattice QCD simulations at imaginary chemical potential for two
and three quark flavors have shown that the order of the RW endpoint
depends on the quark masses [2,3]. For low and high masses, the transition
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is of first order. A first-order transition at large quark masses is to be
expected from the limit of pure SU(3) gauge theory. In the intermediate
mass range, the transition changes to second order with tricritical points in
between.

Since lattice studies are hampered by the sign problem and are com-
putationally very demanding, it is worth studying these aspects in effective
models. In the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model,
which can be applied for real as well as at imaginary chemical potentials, we
thus investigate the phase structure in the µ2–T -plane. At imaginary quark
chemical potential, the PNJL model also features the RW symmetry and we
find the RW periodicity as well as the RW phase transition.

The PNJL model at imaginary chemical potential has already been in-
vestigated by Sakai et al. [4,5]. In a two-flavor PNJL model we extend their
work and study the order of the RW phase transition endpoint for different
Polyakov-loop potentials and analyze its dependence on the relative strength
of the potentials [6]. This is done in two ways: Since quarks with larger
mass have a smaller contribution to the pressure, increasing the quark mass
makes the gluonic part more important. Alternatively, we directly change
the prefactor of the gluonic contribution.

2. Model

We employ the PNJL model for two light quark flavors at real and imag-
inary chemical potential in mean-field approximation following the standard
procedures. The Lagrangian is given by

LPNJL = ψ̄ (iγµDµ −m0)ψ +
gS
2

[(
ψ̄ψ
)2 +

(
ψ̄iγ5τaψ

)2]+ U (Φ, Φ̄)
with quark fields ψ, covariant derivative Dµ, bare quark mass m0, coupling
constant gS of the four-quark interaction and the Polyakov-loop potential U ,
modeling the gluonic contributions which depends on the Polyakov-loop vari-
ables Φ and Φ̄. Parameters are taken from [4].

The extended Z3 transformation [5] is given by

θ → θ + 2πk/3 ,
Φ → Φ exp [−i2πk/3] with k ∈ Z .

A convenient definition is themodified Polyakov loop, Ψ = Φ exp [iθ], which is
then invariant under the extended Z3 transformation. It can easily be shown
that the PNJL model is invariant under the extended Z3 transformation and
thus possesses the RW periodicity at imaginary chemical potential.
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3. Results

We start with a logarithmic form of the Polyakov-loop potential [7]

Ulog

T 4
= −a(T )

2
ΦΦ̄+ b(T ) log

[
1− 6ΦΦ̄+ 4

(
Φ3 + Φ̄3

)− 3
(
ΦΦ̄
)2]

.

We show the behavior of the order parameters at fixed θ = 0 and θ = π/3
in Fig. 1. Along θ = π/3 which is in the middle of the period we find
a jump in the absolute value and the phase of the Polyakov loop. The
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Fig. 1. Modified Polyakov-loop variables and the normalized chiral condensate σ/σ0

at θ = 0 (left) and θ = π/3 (right) as functions of temperature. The phase of Ψ
vanishes at θ = 0 and only the positive branch is shown at θ = π/3.

dependence on θ at fixed temperatures close to the RW transition is displayed
in Fig. 2. At temperatures higher than the transition temperature TRW the
phase has a jump and the absolute value a cusp when crossing the RW
phase transition, signaling the jump from one Z3 sector to another. At
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Fig. 2. Dependence of the modified Polyakov-loop variables and the normalized chi-
ral condensate on θ for different temperatures around TRW = 190.3MeV (solid/red:
T = 185MeV, dashed/green: 188MeV, dotted/blue: 191MeV).
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temperatures slightly lower than TRW we, however, find two jumps in the
phase and also in the absolute value. In addition, the chiral condensate picks
up the same discontinuities as the absolute value of the Polyakov loop. For
even lower temperatures all transitions are continuous. We summarize these
findings in the PNJL phase diagram shown in Fig. 3. Crossover lines are
determined by the inflection point of the Polyakov-loop absolute value as a
function of temperature. Chiral crossover lines are omitted as they are not
relevant for our current analysis.
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Fig. 3. Phase diagram in the θ–T (left) plane and the µ2–T (right) plane. Solid
gray (red) lines denote first-order RW/deconfinement transitions, dashed (green)
lines show the deconfinement crossover, and the solid black (blue) line at real
chemical potential denotes the chiral first-order transition. The diamonds represent
second-order endpoints.

Using the logarithmic parametrization, we find the RW endpoint to be
a triple point independent of the quark masses, contrary to lattice results.
First-order lines departing from the triple point are clearly visible. Increasing
the bare quark massesm0 leads to larger effective quark masses. This results
in growing “RW legs”, see Fig. 4. For m0 larger than about 180 MeV the
first-order lines even reach across the µ = 0 axis. This scenario is shown in
the right panel of Fig. 4 in comparison to the standard-parameter results.

If instead the coupling constant gS is increased, which likewise leads to
larger constituent quark masses, the same effect is found [8].

Next, we analyze the behavior of other Polyakov-loop potentials. Though
all parameterizations are designed to reproduce pure-gauge lattice thermo-
dynamics, their effect on the RW endpoint is quite different.

The polynomial parametrization [9] leads to a second-order transition for
all examined quark masses. The reason is, that the polynomial parametriza-
tion shows a much weaker first-order transition in the heavy-quark limit.

Similarly, the Fukushima-type Polyakov-loop potential [10], given by

UFuku

T 4
= −bT

(
54e−a/TΦΦ̄+ log

[
1− 6ΦΦ̄+ 4

(
Φ3 + Φ̄3

)− 3
(
ΦΦ̄
)2])
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Fig. 4. Left panel: “RW legs” in the θ–T phase diagram for different values of
the bare quark mass m0. Right panel: Phase diagram in the µ2–T plane for
two different values of the bare quark mass. Solid/red (dashed/blue) lines show
first-order RW/deconfinement (deconfinement crossover) transitions for a high bare
quark mass m0 = 200MeV. Thin lines show the RW, deconfinement and chiral
transitions for the standard value of m0 = 5.5MeV.

produces a second-order transition for small quark masses and changes to
first order only for very high quark masses, where the PNJL model is not
applicable any more. An alternative way to drive the system towards the
pure gauge limit is to increase the global factor b of the Fukushima-type
Polyakov-loop potential. As presented in Fig. 5, the RW endpoint changes
from second to first order at about b = 0.09Λ3, whereas the default value
for Nf = 2 is b = 0.015Λ3. For b > 0.5Λ3 the “RW legs” reach across the
temperature axis. With increasing b the transition temperature approaches
the heavy-quark limit of Tc = 270MeV.
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Fig. 5. Temperature and order of the RW transition as a function of parameter b.
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We conclude, that the PNJL model together with currently available
parameterizations for the Polyakov-loop potential is not able to reproduce
the mass dependence found in lattice QCD studies. Sakai et al. have shown
that the ‘entanglement’ PNJL (EPNJL) model, which uses a Polyakov-loop
dependent coupling gS, reproduces the desired behavior [11].

4. Summary

We have shown that the choice of the Polyakov-loop potential paramete-
rization has an important influence on the order of the RW phase transition
endpoint. Modifying the strength of the quark degrees of freedom relative
to the Polyakov-loop potential which models the gluon degrees of freedom,
we find interesting changes in the phase structure at imaginary and real
chemical potential. Results from lattice QCD should be used to constrain
the Polyakov-loop potential parameterizations used in model studies.

The authors thank the organizers for an interesting workshop. D.S.
acknowledges travel support by HIC for FAIR. This work was partially sup-
ported by the German Federal Ministry of Education and Research under
project nr. 06DA9047I, the Helmholtz Alliance EMMI and the Helmholtz
International Center for FAIR.

REFERENCES

[1] A. Roberge, N. Weiss, Nucl. Phys. B275, 734 (1986).
[2] M. D’Elia, F. Sanfilippo, Phys. Rev. D80, 111501 (2009).
[3] P. de Forcrand, O. Philipsen, Phys. Rev. Lett. 105, 152001 (2010).
[4] Y. Sakai et al., Phys. Rev. D79, 096001 (2009).
[5] H. Kouno, Y. Sakai, K. Kashiwa, M. Yahiro, J. Phys. G: Nucl. Part. Phys.

36, 115010 (2009).
[6] D. Scheffler, The PNJL Model at Imaginary Chemical Potential, MSc Thesis,

TU Darmstadt (2010).
[7] S. Roessner, C. Ratti, W. Weise, Phys. Rev. D75, 034007 (2007).
[8] K. Morita, V. Skokov, B. Friman, K. Redlich, Phys. Rev. D84, 076009

(2011).
[9] C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D73, 014019 (2006).
[10] K. Fukushima, Phys. Rev. D77, 114028 (2008).
[11] Y. Sakai, T. Sasaki, H. Kouno, M. Yahiro, Phys. Rev. D82, 076003 (2010);

T. Sasaki, Y. Sakai, H. Kouno, M. Yahiro, Phys. Rev. D84, 091901 (2011).

http://dx.doi.org/10.1016/0550-3213(86)90582-1
http://dx.doi.org/10.1103/PhysRevD.80.111501
http://dx.doi.org/10.1103/PhysRevLett.105.152001
http://dx.doi.org/10.1103/PhysRevD.79.096001
http://dx.doi.org/10.1088/0954-3899/36/11/115010
http://dx.doi.org/10.1088/0954-3899/36/11/115010
http://dx.doi.org/10.1103/PhysRevD.75.034007
http://dx.doi.org/10.1103/PhysRevD.84.076009
http://dx.doi.org/10.1103/PhysRevD.84.076009
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1103/PhysRevD.77.114028
http://dx.doi.org/10.1103/PhysRevD.82.076003
http://dx.doi.org/10.1103/PhysRevD.84.091901

	1 Introduction
	2 Model
	3 Results
	4 Summary

