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Because of the controversial X(3872) meson’s very close proximity to
the D0D

∗0
threshold, this charmonium-like resonance is often considered

a meson–meson molecule. However, a molecular wave function must be
essentially of a meson–meson type, viz. D0D

∗0
in this case, with no other

significant components. We address this issue by employing a simple two-
channel Schrödinger model, in which the JPC = 1++ cc̄ and D0D

∗0
chan-

nels can communicate via the 3P0 mechanism, mimicked by string breaking
at a sharp distance a. Thus, wave functions and their probabilities are
computed, for different bound-state pole positions approaching the D0D

∗0

threshold from below. We conclude that at the PDG X(3872) mass and
for reasonable values of a, viz. 2.0–3.0 GeV−1, the cc̄ component remains
quite substantial and certainly not negligible, despite accounting for only
about 6–10% of the total wave-function probability, owing to the naturally
long tail of the D0D

∗0
component.
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The X(3872) charmonium-like meson is by now a very well established
resonance [1]. It was first observed in 2003, by the Belle Collaboration [2],
in the decay B± → K±π+π−J/ψ, with significance in excess of 10σ. Since
then, it has been confirmed by several collaborations, viz. Belle, BaBar,
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CDF, D0, CLEO, and, more recently, by LHCb (see the 2012 PDG [1] listings
for references). The PDG summary table lists the X(3872) as an isoscalar
state with positive C-parity, from the observed γJ/ψ decay, but unknown
J and P , having an average mass m = 3871.68± 0.17 MeV/c2 and a width
Γ < 1.2 MeV/c2. The two most likely JPC assignments are 1++ and 2−+,
while the observed hadronic decay modes are ρ0J/ψ, ωJ/ψ, D0D

∗0, and
D0D

0
π0. Henceforth, we shall denote D0D

∗0 simply by D0D∗0.
Meson spectroscopists have been puzzled by the X(3872) because of

its low mass as compared to predictions of conventional quark models, as
well as its remarkable proximity to the D0D∗0 threshold, being “bound” by
only 0.15 MeV [1]. This has led to a plethora of model descriptions of the
X(3872), viz. as a cc̄ state, meson–meson (MM) molecule, tetraquark, or
hybrid meson. For a number of reviews on the many different approaches
and the experimental situation, see [3]. Recently, we have described [4]
the X(3872) as a regular but “unquenched” 1++ (3P1) charmonium meson,
whose physical mass is dynamically shifted about 100 MeV downwards from
the bare 2 3P1 cc̄ state due to its strong coupling to the S-wave D0D∗0

and D±D∗∓ channels, besides several other OZI-allowed and OZI-forbidden
(ρ0J/ψ, ωJ/ψ) channels. Thus, the observed hadronic X(3872) properties
were well reproduced [4].

Nevertheless, the closeness of the X(3872) to the D0D∗0 threshold seems
to favour a molecular interpretation [5]. In the latter paper, it is stated
that, whatever the original mechanism generating the resonance, a near-
threshold bound state will always have a molecular structure. This implies
that the MM component of the wave function, i.e., D0D∗0, should be the
only relevant one. Here, we shall study this issue in a simplified, coordinate-
space version of the model employed in [4], restricted to the most important
channels, viz. cc̄ and D0D∗0. Note that even if the X(3872) is essentially a
molecule, it will mix with cc̄ states having the same quantum numbers.

Now, we turn to the two-channel model used in [6], with parameters
adjusted for the X(3872). Consider a coupled qq̄–M1M2 system, with the
qq̄ pair confined through a harmonic-oscilator (HO) potential, whereas the
two mesons M1,M2 are free. The correponding 2 × 2 radial Schrödinger
equation is given by Eq. (1), with the Hamiltonians (2) and (3). Here, µc,f
is the reduced mass in either channel, mq = mq̄ the constituent quark mass,
lc, lf the orbital angular momenta, and ω the HO frequency:(

hc V
V hf

)(
uc
uf

)
= E

(
uc
uf

)
, (1)

hc =
1

2µc

(
− d2

dr2
+
lc(lc + 1)

r2

)
+

1

2
µcω

2r2 +mq +mq̄ , (2)
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hf =
1

2µf

(
− d2

dr2
+
lf (lf + 1)

r2

)
+M1 +M2 . (3)

Note that we use here relativistic definitions for the MM reduced mass µf
and relative momentum k, even below threshold, contrary to [6], though
this is practically immaterial for the X(3872). At some “string-breaking”
distance a, transitions between the two channels are described by an off-
diagonal point-like potential with strength g

V =
g

2µca
δ(r − a) . (4)

Continuity and twice integrating Eqs. (1)–(3) yields the boundary conditions

u′c(r ↑ a)− u′c(r ↓ a) + λ
auf (a) = u′f (r ↑ a)− u′f (r ↓ a) +

λµf
aµc

uc(a) = 0 ,(5)

uc(r ↑ a) = uc(r ↓ a) and uf (r ↑ a) = uf (r ↓ a) . (6)

A general solution to this problem is given by Eqs. (7) and (8) for the
confined and the MM state, respectively. The two-component function
u(r) = (uc(r), uf (r)) is related to the radial wave function as u(r) = rR(r):

uc(r) =

{
AcFc(r) r < a ,

BcGc(r) r > a ,
(7)

uf (r) =

 AfJlf (kr) r < a ,

Bf

[
Jlf (kr)k2lf+1 cot

(
δlf (E)

)
−Nlf (kr)

]
r > a .

(8)

Now, Fc(r) vanishes at the origin andGc(r) falls off exponentially for r →∞.
Defining then z = µωr2 and

ν =
E − 2mc

2ω
− lc + 3/2

2
, (9)

we get

F (r) =
1

Γ (l + 3/2)
z(l+1)/2e−z/2φ(−ν, l + 3/2, z) , (10)

G(r) = −1
2Γ (−ν)rzl/2e−z/2ψ(−ν, l + 3/2, z) . (11)

Here, the functions φ and ψ are the confluent hypergeometric functions of
first and second kind, respectively, and the Γ function acts as a normal-
ising function. The functions J and N in Eq. (8) are defined in terms of
the spherical Bessel and Neumann functions j, n, i.e., Jl(kr) = k−lrjl(kr)
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and Nl(kr) = kl+1rnl(kr). From the boundary conditions (5), (6) and the
explicit wave-function expressions in Eqs. (7), (8), we obtain

G′c(a)Fc(a)− F ′c(a)Gc(a) =
g

a
Jlf (ka)Fc(a)

Af
Bc

,

J ′lf (ka)Nlf (ka)− Jlf (ka)N ′lf (ka) =
g

a

µf
µc
Jlf (ka)Fc(a)

Ac
Bf

. (12)

Using next the Wronskian relations

W (Fc(a), Gc(a)) = lim
r→a

[
Fc(r)G

′
c(r)− F ′c(r)Gc(r)

]
= 1 , (13)

W
(
Nlf (ka), Jlf (ka)

)
= lim

r→a

[
Nlf (kr)J ′lf (kr)−N ′lf (kr)Jlf (kr)

]
= −1

yields
AfBf = −µf

µc
AcBc (14)

and
Af
Bf

= −
[
g2

a2

µf
µc
J2
lf

(ka)F 2
c (a)

]−1Bc
Ac

. (15)

Finally, with the expression for the MM scattering wave function uf (r) (sec-
ond line in Eq. (8)), the final result for cot δlf (E) is obtained, reading

cot
(
δlf (E)

)
= −

[
g2µf
µc
kj2
lf

(ka)Fc(a)Gc(a)

]−1

+
nlf (ka)

jlf (ka)
. (16)

Now, in the present X(3872) model, there is only one scattering channel, viz.
for the D0D∗0 system. Thus, poles in the S-matrix, which represent possible
resonances, bound states, or virtual states, are given by the simple relation
cot δlf (E) = i. On the other hand, the solutions to the two-component radial
wave function (7), (8) are then fully determined by relations (14) and (15),
up to an overall normalisation constant.

Next, we apply this formalism to the coupled cc̄–D0D∗0 system. In the
confined channel, the cc̄ system is in a 2 3P1 state, and so lc = 1, whereas the
D0D∗0 channel has lf = 0. In Table I, we give the fixed parameters of the
model, with the HO frequency ω and the constituent charm mass as in [7],

TABLE I

Fixed model parameters [7] and D0D∗0 threshold.

Parameter ω mc mD0 mD∗0 mD0 +mD∗0

Value (MeV) 190 1562 1864.84 2006.97 3871.81
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being unaltered ever since. However, the radial quantum number ν in Eq. (9)
varies as a function of the energy, and therefore will generally be non-integer,
becoming even complex for resonance poles. The parameter that determines
such variations is the coupling g. In the uncoupled case, i.e., for g = 0,
one recovers the bare 3P1 HO spectrum, with energies (3599 + 2nω) MeV
(n = 0, 1, 2, . . .). The only other free parameter is the string-breaking dis-
tance a. Now we try to find S-matrix poles as a function of the coupling g
and for two reasonable values of a, viz. 2.0 and 3.0 GeV−1 (≈0.4 and 0.6 fm).
Searching near the D0D∗0 threshold, a dynamical pole is found, either on
the first Riemann sheet, corresponding to a bound state, or on the second
one, which represents a virtual state (see Ref. [4], second paper). These
results are presented in Table II and Fig. 1.

TABLE II

Bound and virtual states near the D0D∗0 threshold.

a (GeV−1) g Pole (MeV) Type of bound state
2.0 1.133 3871.68 virtual
2.0 1.150 3871.81 virtual
2.0 1.153 3871.81 real
2.0 1.170 3871.68 real
3.0 2.097 3871.68 virtual
3.0 2.144 3871.81 virtual
3.0 2.150 3871.81 real
3.0 2.199 3871.68 real
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Fig. 1. Dynamical real (solid) and virtual (dashed) pole trajectories for a =

2.0 GeV−1 (left) and a = 3.0 GeV−1 (right). The arrows indicate pole movement
for increasing g. The PDG [1] X(3872) mass is labelled by ∗. Also see Table II.
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Note that the dynamical pole arises from the D0D∗0 continuum and
is not connected to the bare 2 3P1 cc̄ state at 3979 MeV, contrary to the
situation in [4] (first paper). For our study here, this is of little consequence.

Finally, we depict the normalised two-component wave-function R(r) in
Fig. 2, evaluated for the PDG [1] X(3872) mass of 3871.68 MeV. One clearly
sees the P-wave behaviour of the cc̄ component, whereas D0D∗0 is in an
S-wave. Moreover, the cc̄ admixture is certainly not negligible, despite the
low total probablities of 6.13% and 10.20%, for a = 2 GeV−1 and a =
3 GeV−1, respectively, which are logical because of the very long tail of the
D0D∗0 component; also see [8]. Soon we will publish more detailed work.
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Fig. 2. Radial wave-functions for E = 3871.68 MeV and g = 1.170, g = 2.199 for
a = 2.0 GeV−1 (left) and a = 3.0 GeV−1 (right). Also see Table II.
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