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1. Introduction

Theory predictions play a very important role in the particle physics ex-
periments at current hadron colliders. They are not only needed for compar-
ison with the signal one aims at measuring, but are also required throughout
the analysis for the modelling of the numerous backgrounds that make most
experimental measurements very challenging. In many cases, the signal-to-
background ratio is close to or below unity, so that a valuable measurement
is only possible with a reliable understanding of the background processes.

At hadron colliders the main tool for obtaining theory predictions is
perturbation theory in the strong coupling, which is applicable thanks to
asymptotic freedom. The first approximation for a theoretical prediction is
a tree-level calculation. This type of computation is highly automated and
there exist many programs for their calculation. Unfortunately, these pre-
dictions are, in general, very crude and suffer from many uncertainties, such
as a large dependence on the unphysical factorisation and renormalisation
scales. This dependence is due to the truncation of the perturbation se-
ries, the dependence would be cancelled by the higher order terms which get
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neglected. At tree level, this dependence is monotonic and therefore, tree-
level predictions cannot provide a quantitative prediction for the absolute
normalisation of cross sections. The problem gets worse with each addi-
tional power of the coupling constant obtained as one increases the number
of jets in the process. This fact is illustrated in Table I. Next-to-Leading
Order (NLO) is the first order at which the scale dependence of the coupling
constant is partly counter-balanced by the scale dependence of the matrix
elements. Therefore, NLO is the first order at which a quantitatively reli-
able prediction can be provided. NLO corrections are typically large and
can, in addition, affect shapes of distributions significantly, yielding a bet-
ter description which is needed to extrapolate backgrounds from a control
region to the signal region. Reliable theory predictions can also be used to
‘convert’ the measurement of a process into an estimate for the contribution
of another.

TABLE I

Dependence of the cross sections on the renormalisation and factorisation scales.
The numbers are for the cross section of a W boson accompanied by up to four
jets. They are taken from Table I of Ref. [1], where more details can be found.

# of jets LO % scale dep. NLO % scale dep.

1 9% 4.5%
2 28% 5.2%
3 47% 7.8%
4 64% 8.4%

2. NLO corrections

To compute NLO corrections, one has to compute two different pieces in
addition to the tree-level calculation. The two parts, called the real and the
virtual parts can be computed independently but they are both separately
divergent. When combined, the divergences cancel, yielding a physically
meaningful result.

2.1. Real part

The real part of the NLO corrections accounts for the emission of an
additional parton into the final state. The real part displays infrared di-
vergences when the emitted particle is either collinear to another final state
parton or if that particle is emitted with a soft momentum. To allow for
the numerical evaluation of the phase-space integration of the real part, its
divergences have to be regulated.
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2.2. Virtual part

The virtual part is currently the bottleneck of the complete automation
of the calculation or NLO cross sections and observables. The standard
method to compute the virtual corrections involves computing all Feynman
diagrams associated with the process. This results for complicated processes
in a very large number of terms for the one-loop amplitude

A =

∫
dl

∑
many terms

N (l, pi)∏
j Pj(l, pi)

. (1)

These terms are called tensor integrals and integrals with N = 1 are called
scalar integrals. Pj(l, pi) are propagators and N is a numerator function
which depends on the loop momentum l and on the external momenta. Each
of these tensor integrals can be written in terms of scalar integrals using
Passarino–Veltman reduction. This step usually involves solving very large
systems of equations and results in very large and potentially numerically
unstable expressions for the coefficients of the scalar integrals. The final
answer for the one-loop amplitudes takes the form

A = R+
∑

diI
(4)
i +

∑
ciI

(3)
i +

∑
biI

(2)
i , (2)

where I(n) is an n-point scalar integral and the sums run over all possible
propagator combinations. The scalar integrals are well known and process
independent. R is the so-called rational part that does not contain any
logarithm or polylogarithms. For simplicity, we will assume that the internal
propagators are massless and, therefore, no tadpole integrals are present.

Recently, a new set of approaches has emerged that takes advantage of
the knowledge that the final answer can be written in terms of a basis of
scalar integrals and aims at computing their coefficient directly avoiding any
computationally intensive integral reduction.

2.3. Unitarity-based methods

The unitarity methods use the general factorisation properties of the
amplitude in combination with the reduction at the integrand level [2] as a
tool to compute coefficients of the scalar amplitudes in Eq. (2). This section
gives a sketch of this method, for a review, see Ref. [3]. The unitarity-based
methods use the so-called generalised unitarity cuts which have the effect of
replacing multiple propagators under the loop integral with delta-functions

1

P 2
→ 2πiδ

(
P 2
)
. (3)
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Unitarity cuts can be seen as projectors that project onto everything that
contains all the propagators of the cut. The cuts are applied on both sides
of Eq. (2). If we apply a quadruple cut on the right-hand side of Eq. (2),
the cut operation on the right-hand side will single out the coefficient of the
single box scalar integral that has the four propagators of the cut. What is
the effect of the quadruple cut on the left-hand side of Eq. (2)? The effect of
a quadruple cut in four dimensions is to freeze the loop integral, since four
denominators are transformed into delta-functions, all integration variables
in the integrand are fixed by the four cut conditions. In addition, the fac-
torisation properties of the amplitude ensure that the integrand factorises
into a product of the four tree-level amplitudes that are singled out at the
four corners of the quadruple cut, with their external legs along the cut
propagators evaluated at a value of the loop momentum that satisfies the
four cut conditions

=
∑
li

A1(li)A2(li)A3(li)A4(li) , (4)

where the sum is over all solutions of the loop momenta that satisfy the
four cut conditions. The advantage of expressions derived in this way com-
pared to those obtained by the traditional reduction methods, beyond the
simplicity of their calculation, is that they are much more compact. This
is partly owed to the fact that all ingredients are on-shell tree amplitudes
and, therefore, do not carry any gauge information which usually clutters
the coefficients obtained by the standard method while cancelling in the final
answer. Such compact expressions are numerically very stable.

In a triple cut, one chooses three propagators to promote to delta-func-
tions. Since the loop integration is four-dimensional and we have three con-
ditions imposed by the cut, we will be left with a one-dimensional integral.
The left-hand side of Eq. (2) will have the schematic form

=

∫
dtJ(t)A1(t)A2(t)A3(t) (5)

after a triple cut has been performed. Again, the integrand splits up into a
product of tree amplitudes due to the factorisation properties of the one-loop
amplitude. The right-hand side of Eq. (2) will get two types of contribu-
tions when a triple cut is applied. There will be a contribution containing
the coefficient of the triangle scalar integral that has exactly the three prop-
agators chosen for the cut and also contributions from box scalar integrals
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that have the three propagators chosen for the triple cut, along with an
additional propagator without cut. This additional propagator contains a
pole in the remaining free loop momentum parameter. So with a proper
choice of parametrisation for the loop momentum and the knowledge of the
parametric form of the integrand in this parametrisation it is possible to
disentangle the triangle coefficient and the box contributions in the triple
cut [4]. In a numerical approach, one can take advantage of the analytic
form of the integrand on the complex plane to subtract the box poles, as
these can be computed as outlined above, from the triple cut and compute
the triangle coefficient [5].

A similar strategy can be used to compute the bubble coefficients. More
details can be found in [4, 5].

3. Applications

Due to both the high statistics and the relative simplicity of its signature
the production of a W boson accompanied with jets is a very important
process at a hadron collider. The production of a vector boson can be used
as a mean of calibrating the underlying event and the jet energy scale. As
these processes are among the best understood, both experimentally and
theoretically, they are widely used as a validation or testing ground for
new tools and methods. As an illustration of the applicability of unitarity
methods, we show results for W +4 jets using the BlackHat library [5] for
the virtual matrix elements and SHERPA [6–9] for the remaining pieces.

Fig. 1 presents the transverse momentum distribution of the first, second,
third and fourth jet in W + 4 jets events. A detailed list of the cuts, jet
algorithm, approximations and calculation setup can be found in Ref. [1].

The dashed (blue) curve is the leading order prediction, the solid (black)
one the NLO result. In the lower pane the ratio with respect to the NLO re-
sult is taken. In addition, the scale variation bands are displayed as hatched
grey (orange) for the LO and in grey for the NLO result. They are obtained
as the envelope of the variation by factors of 1/2, 1/

√
2, 1,

√
2 and 2 around

the central scale value.
One can see that is a shape difference between the leading order and the

NLO predictions. The scale variation is, as expected, much smaller at NLO
that it is at LO.
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Fig. 1. Pt distribution for the first, second, third and fourth jets in W + 4 jets
events. Details on the setup of the calculation can be found in Ref. [1]
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