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CuBA — A CUDA IMPLEMENTATION OF BAMPS∗
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Using CUDA as programming language, we create a code named CuBA
which is based on the CPU code “Boltzmann Approach for Many Parton
Scattering (BAMPS)” developed in Frankfurt in order to study a system of
many colliding particles resulting from heavy ion collisions. Furthermore,
we benchmark our code with the Riemann Problem and compare the results
with BAMPS. They demonstrate an improvement of the computational
runtime, by one order of magnitude.

DOI:10.5506/APhysPolBSupp.5.1027
PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Mh

1. Introduction

Basing ourselves on the BAMPS code developed in Frankfurt by
C. Greiner, Z. Xu et al., we decided to study the interaction between the
gluons of a gluon gas produced at the onset of Heavy Ion Collisions [1]. We
use CUDA as programming language to create the code CuBA “The Boltz-
mann Approach for Many Parton Scattering written with CUDA” [2]. We
expect to get an improvement of the computational runtime. In addition,
both codes are benchmarked with the Riemann problem to compare the
results of the two programs.

In this paper, we investigate the physical concepts behind this program,
the CUDA language and finally the prior results obtained.

∗ Presented by U. Eilhauer at the Workshop “Excited QCD 2012”, Peniche, Portugal,
May 6–12, 2012.
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2. Theory

We are specially interested in solving the Riemann problem in viscous
matter using the relativistic Boltzmann equation which is as follows(
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To get a good compromise between computational runtime and physi-
cal accuracy, we used the application of microscopic theories together with
strong assumptions like neglecting quantum mechanical effects.

The main idea for solving the Boltzmann equation with the Particles-In-
A-Cell-method (PIC) consists in dividing a certain volume into many cells
with volume Vcell = ∆x∆y∆z, where we have N particles, which will suffer
movement- and collision-laws in a certain time interval ∆t. Each particle
will have its own position r and momentum p. So if the particle does not
collide, its propagation is given by

x 7→ x+ vx∆t = x+ c2
px
E

∆t . (2)

The same is valid for the y and z directions.
On the other hand, it is important to consider that the collisions are

binary and can only occur between particles in the same cell. Therefore, the
probability of collisions to occur is given by using the Monte Carlo method
in ∆t

P22 = vrel
σ

Ntest

∆t

Vcell
(3)

being σ the total cross section, which is considered to be isotropic and vrel the
relative velocity given by vrel = s

2E1E2
, where s is the Mandelstam variable,

s = (p1 + p2)
2 [1].

To reduce statistical fluctuations and to keep the accuracy of our pre-
tended solution, we use the testparticle method. It consists in introducing
Ntest = rtestN with rtest as a chosen factor, which increases the number
of particles. To keep the mean free path λ independent of Ntest we reduce
the probability P22 by the same rtest. To get the direction of the outgoing
momentum we boost from the plasma frame to the center-of-mass frame
applying the Lorentz transformation. In the center-of-mass frame we choose
the momentum randomly. After that, we boost back to the original frame.
If a particle collides with one of the six walls established by the box volume,
it will be elastically reflected.
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3. CUDA language

CUDA is a language for parallel programming in GPUs, which recently
started being used in numerical computations in physics, due to the potential
performance increased by order of magnitude.

The CUDA logic is built by writing kernel functions, which calculate the
physical matters, in the device and calling them using the host. The device
is constituted by various grids which include about 655353 blocks for Fermi
architectures and 655352 blocks for older architectures. Each block has 256
threads. The position and momentum of each particle in ∆t is stored in a
thread. So we point out that the big advantage of using CUDA consists in
the fast shared memory region that can be shared among threads [3, 4] .

4. Flowchart

Our code structure is presented in figure 1.

Fig. 1. Flowchart of our CuBA code.

5. Results

To test our code, we have to take into account the initial conditions
we choose. The two important parameters are the time variation ∆t and x
variation ∆x, once we consider a transverse homogeneous plan. ∆t is always
chosen to be smaller than ∆x to avoid large local variations in one time
step. If we increase ∆x, we have to increase the testparticle number Ntest.
The more testparticles we have, more the curve of the Riemann problem
approximates to the theoretical solution. A small testparticle number affects
the fluctuations. To simulate an ideal fluid, we may choose a very small
viscosity.
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First, we check some numerical solutions for CuBA considering various
parameters. For starters we consider our box volume to be 323 fm3, the cross
section, σ = 10GeV−2, dt = 0.1 fm/c, with equal particle distribution at the
beginning and different temperatures on each side of the box, Tleft = 0.4GeV
and Tright = 0.2GeV. The conservation of the total energy is verified, just
as it was expected. We observe the evolution in ∆t in figure 2.

In addition, we observe in figure 2 the typical figure of the Riemann
problem. This problem consists of a propagating shock wave because the
initial conditions impose different temperatures [5].

Fig. 2. Evolution of the energy density, shown for different time-slices ∆t. The
propagation of the two waves from the initial boundary of the Riemann problem
is clearly visible.

Secondly, we range the cross section, considering the other variables con-
stant and as previously referred. We observe the differences in figure 3.

As we can verify, the slope undoes itself by increasing the cross section,
which physically means to have a larger viscosity.

At last, to compare our results to the BAMPS code we choose the same
initial conditions in both codes, which are the ones mentioned at the begin-
ning of this section.
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Fig. 3. Evolution of the local cross section, shown for different time-slices.

In figure 4 we can surely identify the overlapping of the results obtained
with CuBA (black/blue points) and BAMPS (light gray/red points).

Fig. 4. Comparing the energy density of BAMPS (light gray/red points) with CuBA
(black/blue points), both codes produce the same results, except for statistical
fluctuations.
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While the BAMPS code spends 12 minutes and 36 seconds to calculate
the data, CUBA just needs 58.09 seconds.

6. Conclusions

The resulting data can be used to confirm the CPU code and improve
the study of shocking particles. For now, we can say that CuBA is about 13
times faster than BAMPS.

In the near future, we pretend to implement the parameter dt as variable
and optimize our code in computational runtime. Furthermore, we will check
our code with other initial conditions and compare it to BAMPS.

As final result, we expect to obtain a code which is able to calculate any
problem of this type and being as fast as CUDA allows us.
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