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We present a Monte Carlo simulation of an effective theory for local
Polyakov loops at finite temperature and density. The sign problem is
overcome by mapping the partition sum to a flux representation. We de-
termine the phase diagram of the model as a function of the temperature
and the chemical potential.
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1. Introduction

Lattice QCD is a powerful tool to address non-perturbative phenomena
quantitatively and, in principle, is one of the most appropriate techniques
to explore the QCD phase diagram. However, at finite chemical potential,
the fermion determinant becomes complex and it cannot be used as a Boltz-
mann weight in Monte Carlo simulations. Alternative approaches, such as
reweighting, power series expansion, strong coupling/large mass expansion
or analytic continuation from imaginary chemical work only for small chem-
ical potential leaving the rest of the phase diagram unexplored. For true
progress with QCD thermodynamics on the lattice, new ideas are necessary.

In this article, we explore the phase diagram of the SU(3) spin model [1],
where the degrees of freedom are traced SU(3) valued spins (local Polyakov
loops) as a function of temperature and chemical potential. This effective
theory can be derived from full QCD using strong coupling expansion for
the gluon action and hopping expansion for the fermion determinant. It is
motivated by the relation of the deconfinement transition and center sym-
metry of pure gauge theory [2]. From the fermion determinant one takes
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into account a center symmetry breaking term which couples the chemical
potential µ and gives rise to a sign problem at finite µ. However, in this
model, the sign problem can be solved by exactly rewriting the partition
sum in terms of flux variables [4, 5].

2. Center effective theory

The action of the center effective theory has the form

S = −
∑
x

(
τ

3∑
ν=1

[P (x)P (x+ ν̂)? + c.c.] + κ
[
eµP (x) + e−µP (x)?

])
. (1)

The degrees of freedom P (x) are the traced SU(3) variables P (x) = TrL(x)
with L(x) ∈ SU(3) attached to the sites x of a three-dimensional cubic lat-
tice with periodic boundary conditions. By ν̂ we denote the unit vector in
ν-direction, with ν = 1, 2, 3. The first term of the action, i.e., the nearest
neighbor interaction term, can be obtained as the leading contribution in
the strong coupling expansion of the gauge action. This term is invariant
under center transformations P (x)→ zP (x) with z ∈ Z3. The parameter τ
depends on temperature (it increases with T ) and is real and positive. The
second term, referred to as the magnetic term, is obtained as the leading
contribution in the hopping expansion (large mass expansion) of the fermion
determinant. The real and positive parameter κ is proportional to the num-
ber of flavors and depends on the fermion mass (it decreases with mq). The
magnetic term breaks center symmetry explicitly and is complex when the
chemical potential µ is non-zero, thus generating a sign problem.

The grand canonical partition function of the model described by (1) is
obtained by integrating the Boltzmann factor e−S[L] over all configurations
of the Polyakov loop variables. The corresponding measure is a product over
the reduced Haar measures dL(x) at the sites x. Thus

Z =
∏
x

∫
SU(3)

dL(x) e−S[L] =

∫
D[L] e−S[L] . (2)

Equations (1) and (2) define the SU(3) effective theory.

3. Solving the sign problem

To overcome the sign problem we apply high temperature expansion
techniques and map the theory onto a flux representation, where the parti-
tion function is rewritten in terms of new degrees of freedom, so-called flux
variables. Here, we outline the general strategy for the derivation of the flux
representation (for the details see [5]). The general steps are:
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1. Write the Boltzmann weight in a factorized form and expand the ex-
ponentials for individual links and sites.

• Nearest neighbor term (links):

eτP (x)P (x+ν̂)? →
∑
lx,ν

τ lx,ν

lx,ν !
[P (x)P (x+ ν̂)?]lx,ν ,

eτP (x)?P (x+ν̂) →
∑
lx,ν

τ lx,ν

lx,ν !
[P (x)?P (x+ ν̂)]lx,ν .

• Magnetic term (sites), we use η ≡ κeµ and η ≡ κe−µ:

eηP (x) →
∑
sx

ηsx

sx!
P (x)sx , eηP (x)? →

∑
sx

ηsx

sx!
P (x)? sx .

2. Rewrite the partition function as:

Z=
∑
{l,l}

∑
{s,s}

∏
x,ν

τ lx,ν+lx,ν

lx,ν !lx,ν !

(∏
x

ηsxηsx

sx!sx!

∫
dP (x)P (x)f(x)P (x)? f(x)

)
,

(3)
where f(x) =

∑3
ν=1[lx,ν + lx−ν̂,ν ] + sx and f(x) =

∑3
ν=1[lx−ν̂,ν +

lx,ν ] + sx denote two types of fluxes at a site x of the lattice.

3. After integrating out the SU(3) variables L(x) [3], the new form of the
partition sum depends only on the flux variables:

• Dimers lx,ν , lx,ν ∈ [0,+∞[, living on the links (x, ν).
• Monomers sx, sx ∈ [0,+∞[, living on the sites x.

4. The flux variables lx,ν , lx,ν , sx, sx are the new degrees of freedom and∑
{l,l}

∑
{s,s} denotes the sum over all their configurations. The flux

variables are subject to a constraint which forces the total flux f(x)−
f(x) to be a multiple of 3 at each site x.

4. Numerical analysis

For the analysis, we performed simulations with a local Monte Carlo
update on 103, 163 and 203 lattices and focused on the bulk observables
internal energy U and the magnetization P (which is identified with the
Polyakov loop of QCD), as well as their fluctuations C (heat capacity) and
χP (Polyakov loop susceptibility).
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First, we performed several checks of the flux representation and the al-
gorithm. Fig. 1 shows that for small µ and τ the data obtained from the
simulation (circles) nicely approaches the analytical results from a pertur-
bative expansion in τ (lines). We plot P and χP for τ = 0.001 and three
different values of κ as a function of the chemical potential. The same com-
parison is shown in Fig. 3 (left), where the solid curves at the bottom are
the positions of the maxima from the perturbative expansion.
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Fig. 1. P (left) and χP (right) for κ = 0.1, 0.04 and 0.005 and τ = 0.001. We
compare the results from the Monte Carlo simulation on a 103 lattice (circles) and
perturbative expansion in τ (lines).

We also compared our results to other approaches. Fig. 2 shows that
the flux results and the data from a complex Langevin calculation [6] agree
very well, and for µ = 0 also with the results from a conventional simulation
in the spin representation. The discrepancy at τ = 0.132 is solved when a
higher-order algorithm is used for the two values, µ2 = 0.0 and 0.2 (crosses).

To explore the phase boundaries in the τ–µ plane, we identified the po-
sitions of the maxima of χP and C. Subsequently, we used two methods
to determine the nature of the transitions: first we studied the histograms
of U and P to search for a double peak behavior characteristic of a first
order transition, and secondly we analyzed the volume scaling of C and χP.
Fig. 3 (left) shows the positions of the maxima of χP in the τ–µ plane for
κ = 0.1, 0.04, 0.02 and 0.005. We find that there is a first order phase
transition for small µ and κ < κc (triangles), while the rest of the transition
lines shows a crossover behavior (circles). Our estimate for the critical point
for µ = 0 is (τc, κc) = (0.1331(1), 0.016(2)). This value is different from a
mean field analysis of the SU(3) spin model [7], where the critical point was
reported to be at κ = 0.059. However, in [8] it was shown that when con-
sidering higher order corrections the value κc from the mean field approach
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decreases. Fig. 3 (right) shows the positions of the maxima of χP and C,
demonstrating that the crossover region (manifest also in different positions
for the maxima of χP and C) becomes wider with increasing µ.
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Fig. 2. Comparison of 〈P +P ?〉/2V from the flux simulation (filled symbols) to the
results from the complex Langevin approach (empty symbols and two high accuracy
data points are marked with crosses). For µ = 0 we also added the results from
a simulation in the conventional spin approach (asterisks). We compare data at
different values of τ as a function of µ2 for κ = 0.02 on lattices of size 103.
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Fig. 3. Left: Phase diagram obtained from the maxima of χP for 4 values of κ.
The horizontal line marks the critical τ for κ = 0, and the curves below it are
the results from a τ expansion. The point (red) for κ = 0 is the critical endpoint.
Right: Comparison of the phase boundaries obtained from the maxima of χP and C
for three values of κ.
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5. Conclusions

We have studied an effective theory for the Polyakov loop at finite tem-
perature and density. Mapping the theory onto a flux representation enables
us to have a model free of the sign problem and opens the possibility to use
Monte Carlo techniques. For large values of κ (physical case) the transition
is of a smooth crossover type and we conclude that center symmetry alone
does not provide a mechanism for first order behavior in the QCD phase
diagram.

We also compared the recently published results from a complex Langevin
simulation of the SU(3) spin model [6] to the data from our flux simulation.
We find very good agreement between the two methods which is a valuable
test for both, the flux and the complex Langevin approach.
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