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The thermodynamics of the O(N) model in 1+1 dimensions is studied
applying the CJT formalism and the auxiliary field method as well as fully
nonperturbative finite temperature lattice simulations. The numerical re-
sults for the renormalized mass of the scalar particles, the pressure and the
trace anomaly are presented and compared with the results from lattice
simulation of the model. We find that when going to the two-loop order we
observe a good correspondence between the CJT formalism and the lattice
study.
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1. Introduction

The two dimensional O(N) nonlinear sigma model has many interest-
ing features in common with four-dimensional non-Abelian gauge theories,
which makes it useful to study as a toy model for QCD [1–5]. For instance,
the coupling constant is dimensionless, therefore the theory is renormaliz-
able. Besides, this model is asymptotically free and has a dynamically gen-
erated mass gap. Another interesting property is the conformal invariance:
In two dimensions the nonlinear sigma model is classically scale invariant.
However, on the quantum level a scale is introduced due to renormalization
of the quantum corrections. Furthermore, for N = 3 the model exhibits
instanton solutions. We start with the usual expression for the generating
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functional at nonzero temperature

Z = N
∫
DΦδ

(
Φ2 − N

g2

)
exp

− β∫
0

dτ

∞∫
−∞

dxL0

 , (1)

where g is the coupling constant and L0 is a free Lagrangian

L0 = 1
2∂µΦ

t∂µΦ , Φ2 = ΦtΦ,Φt = (σ, π1, . . . , πN−1) . (2)

The fields are restrained by the condition Φ2 = N/g2 which is incorporated
by the delta function. The nonlinear constraint enforces the thermodynam-
ics of the model on an N − 1 dimensional hypersphere and induces the
interactions between the fields. Using the mathematically well-defined (i.e.,
convergent) form of the usual representation of the functional δ-function

δ

(
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g2

)
= lim

ε→0+
N

∫
Dαe

{
−
∫ β
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∫∞
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[
iα
2

(
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g2

)
+ εα2

2

]}

the generating functional and the corresponding Lagrangian of the O(N)
nonlinear model can be rewritten as follows [6]

Z = lim
ε→0+

N
∫
DαDΦ exp

− β∫
0

dτ

∞∫
∞

dxL

 ,
L = 1

2∂µΦ
t∂µΦ+ U(Φ, α) , U(Φ, α) =

i

2
α

(
Φ2 − N

g2

)
+
ε

2
α2 ,

where α is an auxiliary field serving as a Lagrange multiplier.

2. Analytic calculations

In order to study the thermodynamic behavior, we apply the CJT for-
malism. Within this formalism we obtain the following expressions for the
renormalized effective potential and for the renormalized gap equation to
one-loop order

V ren
eff = N

∞∫
0

dk

π

k2

ωk

1
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where µ is the renormalization parameter, m is the vacuum mass, M is the
temperature dependent mass and g2

ren is the renormalized coupling constant.
The details of the computation can be found in [7]. Next, we can calculate
the thermodynamic pressure which is, up to a minus sign, identical to the
minimum of the effective potential

P = −V min
eff .

As was shown in [5], to two-loop order one must apply numerical methods
in order to regularize the effective potential at finite temperature. The final
result is rather lengthy and is given in [5] as well as in [7].

3. Lattice simulation

In this section, we summarize the thermodynamic approach applied by
finite temperature lattice simulations. The Euclidean, discretized action
takes the form of a Heisenberg model,

S = β
∑
〈i,j〉

(1− ~si · ~sj) , (3)

where the sum runs over all bonds of a 2-dimensional lattice, ~si are
3-dimensional unit vectors in internal space and β = N/g2. The correspond-
ing partition function reads

Z ∝

∏
k

∫
S2

~sk

 ∏
〈i,j〉

eβ~si·~sj . (4)

The system at finite temperature T is realized by making the time-like ex-
tent of the lattice finite and consisting of Nt sites, with periodic boundary
conditions in that direction; denoting with a the lattice spacing, we have
aNt = 1/T .

In order to evaluate the pressure, we use the “integral method” [8] and
additive renormalization

p(T )

T 2
= N2

t

β∫
0

(
〈`x + `t〉β′,Nt − 2 〈`〉β′,∞

)
dβ′ , (5)

where `e = ~si · ~si+ê. This requires the knowledge of the “beta function”
∂β/∂ lnT = −a∂β/∂a, which is extracted nonperturbatively, measuring the
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running of the coupling with the scale and using a suitable parametrization
of the data. Note that the system at T = 0 is numerically approximated
with a large enough square system, that is Nx = Nt.

The running of the scale a(β) is needed to convert the temperature
in physical units. This is realized by computing the spin–spin correla-
tion function in a zero-temperature system over a wide range of couplings
C(an) = 〈~si · ~si+nê〉, from which we obtain the zero-temperature mass m.
Distances on the lattice are in units of a, therefore, the masses we measure
are the adimensional quantities am; once we fix the corresponding physical
value we have the function a(β) in units of 1/m.

4. Results and discussion

In this section, we compare the analytic results with lattice simulations.
We choose N = 3, corresponding to a system of three scalar fields. The
vacuum mass of the scalar field m is the only dimensionful parameter of the
model. Therefore, we plot all thermodynamic observables in units of m.

Figure 1 shows the analytic result for the temperature dependent renor-
malized mass of the scalar fields. An important observation is that it has
a similar behavior as the gluon mass in the deconfined phase, e.g. Ref. [9]
and Refs. therein. The model exhibits dimensional transmutation just like
QCD, meaning that at zero temperature there is a nonvanishing mass gap,
which is generated due to renormalization of quantum corrections. Besides,
at high T the temperature dependence of the mass can be approximately
parametrized by T/ log T . This is exactly the same behavior that one ob-
serves for the gluon mass in the deconfined phase.
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Fig. 1. The analytic result for the mass of the scalar field as a function of T/m.
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Figure 2 shows the thermodynamic pressure. The uncertainties are very
small and completely overcome by systematics. The high temperature limit
is better described in the two-loop calculations, whereas at low temperatures
there is a better correspondence between the lattice simulations and the
one-loop calculations. We find that at very high temperatures one degree
of freedom becomes effectively removed, and the pressure approaches the
limit of a non-interacting gas of N − 1 bosons, P/N = (N − 1)πT 2/6N,
which is indicated by the straight dashed line in the upper right corner.
This is an immediate consequence of the asymptotic freedom and of the
nonlinear constraint. One can understand this behavior by remembering
that we start with a free Lagrangian for N scalar fields. Introducing the
nonlinear condition, Φ2 = N/g2, the thermodynamics is constraint on a
two dimensional sphere which effectively removes one degree of freedom.
Analytically this removal of one degree of freedom can only be described in
the 2-loop approximation.
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Fig. 2. The pressure as a function of T/m in one-loop (dashed/blue) and in two-
loop (solid/red) approximation compared to lattice simulations for different values
of β = N/g2.
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