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Within the context of the gauge/gravity duality, we discuss the frame-
work to compute the spectral functions governing the generalized Langevin
dynamics of a heavy quark propagating through a strongly coupled, non-
conformal large-N plasma. Particular attention is focused on the definition
of a spectral function that has the correct large-frequency fall-off and sat-
isfies appropriate dispersion relations.
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1. Introduction

In the past ten years, the holographic gauge/gravity duality conjecture
[1] has provided a new tool for the description of the non-perturbative physics
of strongly coupled gauge theories, allowing observables to be computed in
terms of the dynamics of a gravitational system in a higher-dimensional
curved space-time (the gravity dual description).

In this context, much attention has been devoted to the study of the dy-
namics of hard probes propagating through a deconfined plasma, described
in the dual picture by a higher-dimensional black hole. In particular, the
problem of Langevin diffusion of a heavy quark through a deconfined plasma
has been discussed in [2, 3] for a generic non-conformal theory admitting a
gravity dual. Here, we will give an overview of this problem and summarise
the results of [2, 3], to which the reader is referred for details.

2. The Generalized Langevin Process: 4D perspective

Under very general assumptions, the motion of a heavy quark through
the deconfined QCD plasma1 can be described by a Generalized Langevin

∗ Presented at the Workshop “Excited QCD 2012”, Peniche, Portugal, May 6–12, 2012.
1 By heavy, we mean that the quark mass is much larger than the temperature of the
plasma. This applies, for example, to the charm and bottom quarks produced in the
RHIC and LHC fireballs.
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Process, i.e. an integro-differential equation for the classical evolution of the
particle position X(t), of the form2

MqẌ(t) =

+∞∫
−∞

dt′GR

(
t− t′

)
X
(
t′
)
+ ξ(t) . (1)

Above, the first term on the right-hand side is a classical viscous force with
retardation effects, governed by the kernel GR(τ), whereas the second term
is a stochastic noise function with Gaussian correlation:

〈ξ(t)〉 = 0 ,
〈
ξ(t)ξ

(
t′
)〉

= Gsym

(
t− t′

)
. (2)

Both functions GR and Gsym can be, in principle, calculated as the corre-
lators of the same operator F(t), which represents the instantaneous force
that the thermal bath exerts on the particle

GR(t) = −iθ(t) 〈 [F(t),F(0)] 〉 , Gsym(t) = −
i

2
〈 {F(t),F(0)} 〉 , (3)

where now the brackets represent quantum expectation values in the ensem-
ble describing the plasma.

It is instructive to write equation (1) in Fourier space, in terms of the
frequency ω

−Mq ω
2X(ω) = GR(ω)X(ω) + ξ(ω) ,

〈
ξ2(ω)

〉
= Gsym(ω) . (4)

Dispersion relations allow to write GR(ω) in terms of its imaginary part,
i.e. the spectral density ρ(ω)

ImGR(ω) = −πρ(ω) , GR(ω) =

∫
dω′

ρ(ω′)

ω − ω′
. (5)

Furthermore, Gsym(ω) may be obtained from ρ(ω) once the density matrix
of the plasma is known.

When using this formulation, one must be careful to notice that the
Fourier integrals exist only if ρ(ω) has an appropriate fall-off behavior at
large ω. If this does not happen, the process is dominated by wild ran-
dom kicks at short time separation. In order to be considered physical, the
spectral density has to vanish sufficiently fast for large ω.

2 Here and in the following sections, we consider, for simplicity of notation, the one-
dimensional, non-relativistic case. In the non-relativistic case, all equations generalize
straightforwardly to three dimensions, whereas more care is needed for the relativistic
treatment, where the correlators become non-trivial matrices. See [2] for details.
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The Green’s functions governing the Langevin process can be computed
at strong coupling via holography if we assume that, in this regime, the gauge
theory admits at gravitational dual description. Our task in the following
will be to outline the setup for this computation, and to describe how to
obtain a physical spectral with the correct high frequency behavior.

3. The Generalized Langevin Process: the gravity
dual perspective

3.1. Review of gauge/gravity duality

The gauge/gravity duality, or AdS/CFT correspondence, (see [1] for a
review) is the conjectured equivalence between a gauge field theory in D flat
space-time dimensions (boundary theory) and a string theory in a (D + n)-
dimensional curved space-time (bulk theory). The field theory can be thought
of as living on the boundary of the higher-dimensional space-time. The latter
features a non-compact coordinate r which parametrizes the distance from
the boundary and corresponds to the energy scale in the field theory dual.

In the limit, when the gauge theory has a large number of colors, and is
in a regime of strong ’t Hooft coupling, the string theory may be well approx-
imated with its classical gravity limit. One of the main insights about this
correspondence, which we summarize below, allows the computation of field
theory correlators at strong coupling via a classical calculation on the grav-
ity side [4]. The main ingredient for these calculations is the field/operator
correspondence:

• To each boundary theory gauge-invariant operator O(x), there corre-
sponds a bulk field Φ(x, r), whose boundary value represents a source
for O(x), i.e. a Lagrangian coupling in the boundary theory of the
form

Scoupling =

∫
dDxO(x)Φ(x, r = 0) . (6)

• Close to the boundary, the classical solution for the field Φ(x, r) has
an expansion of the form:

Φ(x, r) = A(x)rD−∆ +B(x)r∆ , ∆ ≡ dim[O] . (7)

• The two-point function of the operator O(x) is given in momentum
space by

〈O(p)O(−p)〉 ∝ B(p)/A(p) , (8)
where A(p), B(p) are the Fourier transforms of the functions appearing
in Eq. (7).

In the next subsection, we will identify the bulk field that corresponds
to the operator F(t) which defines the Langevin correlators via Eq. (3).
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We will be interested in the case when the bulk space-time is a five-
dimensional general asymptotically Anti-de Sitter (AdS) black hole, with
metric3

ds2 = b2(r)

[
dr2

f(r)
− f(r)dt2 + dxidxi

]
, i = 1, 2, 3 . (9)

The AdS asymptotics require that the space-time has a (conformal) bound-
ary at r = 0, i.e.

r → 0 , f(r)→ 1 , log b(r) ∼ log
`

r
+ subleading . (10)

The presence of a bulk black hole means that there exists a regular horizon
at r = rh > 0, where

f(rh) = 0 , ḟ(rh) = 4πTh . (11)

The 4D dual to such a system is an asymptotically conformal (in the UV)
field theory in a deconfined plasma in equilibrium at temperature Th [1].

3.2. The trailing string picture of quark diffusion

A heavy quark is represented in the gravity dual by the boundary end-
point, moving at constant speed v, of a string with finite tension, stretching
from the boundary down into the interior [6]. The trailing string profile in
the interior is found by solving for the minimal embedding of the string, i.e.
the extremization of the 1+1 dimensional Nambu–Goto action in the back-
ground (9). The solution is expressed in terms of the embedding coordinates

~X(r, t) = (vt+ ξ(r))~v/v , (12)

where ξ(r) vanishes at r = 0 and represents the bending of the string away
from the boundary. The non-trivial metric in the bulk causes momentum
to flow from the endpoint into the horizon, and this produces a classical
drag friction. The induced worldsheet metric is a 1 + 1-dimensional black
hole, with temperature Ts < Th, and horizon located at the point rs, where
f(rs) = v2.

As noted in [7], the fluctuations around the classical string solution,
δX(r, t) are the bulk field dual to the force operator F(t) that determines
the Langevin correlators. Therefore, these correlators can be computed,
and the Langevin dynamics derived, by defining fluctuations around the
background (12)

3 These backgrounds may be obtained as solutions of simple five-dimensional Einstein–
Dilaton systems, see [5] and references therein.
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~X(r, t) = (vt+ ξ(r))~v/v + δ ~X(x, t) , (13)

solving the linearized equation of motion for the bulk field δ ~X(x, t), and
applying the prescription (6)–(8). As explained in detailed in [2], this pro-
cedure allows to numerically obtain, for arbitrary temperature Th and ve-
locity v, the full frequency-dependent Langevin spectral density ρ(ω) which
determines the correlator through Eq. (5). Furthermore, in [2], analytic
expressions were obtained for the high-frequency limit, which controls the
short-time behavior of the diffusion process and reads, in the non-relativistic
case

ρ(ω) ' `2

2π2`2s
ω3 h

(√
2

ω

)
, ω →∞ , (14)

where ` is the asymptotic AdS length, `s the string length, and the function
h(r) defines the details of the metric near the boundary

b(r) ∼ `

r
h(r) , r → 0 . (15)

From (14) it is clear that the spectral density obtained in this fashion has
a fast growth, ρ ∼ ω3, for large ω, and it cannot directly be used to model
the physical Langevin process, as discussed at the end of Sec. 1.

3.3. Dressed Langevin correlators

Now we address the question of defining holographically a spectral den-
sity that satisfies the correct fall-off behavior at large ω. In general, ρ(ω) will
depend on temperature, but notice that the high frequency behavior (14)
does not. Thus, if we subtract the same quantity at, say, T = 0, this will
cancel the leading term at all T . This property was used in [3] to propose a
definition for the physical spectral density as

ρ(phys)(ω) = ρ(ω)− ρ(vac)(ω) , (16)

where the subtracted term ρ(vac)(ω) accounts for the dissipation in the zero-
temperature vacuum, due to quantum fluctuations. As shown in [3], the
expression (16) can be derived from a path integral computation, by intro-
ducing a dressed quark coordinate required to undergo no dissipation when
propagating in vacuum.

The subtracted vacuum term ρ(vac)(ω) is computed by the same proce-
dure outlined in Sec. 3.2, in a bulk solution with no black hole, i.e. as in (9)
but with f(r) = 1. The resulting ρ(vac) is trivially temperature indepen-
dent, and as shown in [3] the subtraction cancels the leading as well as the
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first subleading high-frequency behavior, leaving a spectral density with a
physically acceptable fall-off

ρ(phys)(ω) ∼ ω−1 , ω →∞ . (17)

As an illustration of this results, we display in Fig. 1 the subtracted
spectral function in the simplest case, where the bulk metric is exactly AdS,
i.e. b(r) = `/r. For more realistic applications, one can compute the same
quantities in phenomenological gravity duals which are closer to QCD, for
example those described in [5].
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Fig. 1. The unsubtracted (red solid), vacuum (black dashed) and subtracted (blue
dashed, scaled up by a factor 102) temperature-normalized spectral densities as a
function of frequency, in the example of the AdS black hole bulk metric. The quark
velocity is taken to be v = 0.995c.

REFERENCES

[1] O. Aharony et al., Phys. Rep. 323, 183 (2000) [arXiv:hep-th/9905111].
[2] U. Gursoy et al., Lect. Notes Phys. 828, 79 (2011) [arXiv:1006.5461

[hep-th]].
[3] E. Kiritsis, L. Mazzanti, F. Nitti, J. Phys. G 39, 054003 (2012)

[arXiv:1111.1008 [hep-th]].
[4] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B428, 105 (1998)

[arXiv:hep-th/9802109]; E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)
[arXiv:hep-th/9802150].

[5] U. Gursoy et al., Lect. Notes Phys. 828, 79 (2011) [arXiv:1006.5461
[hep-th]].

[6] S.S. Gubser, Phys. Rev. D74, 126005 (2006) [arXiv:hep-th/0605182].
[7] S.S. Gubser, Nucl. Phys. B790, 175 (2008) [arXiv:hep-th/0612143].

http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://dx.doi.org/10.1007/978-3-642-04864-7_4
http://dx.doi.org/10.1088/0954-3899/39/5/054003
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1007/978-3-642-04864-7_4
http://dx.doi.org/10.1103/PhysRevD.74.126005
http://dx.doi.org/10.1016/j.nuclphysb.2007.09.017

	1 Introduction
	2 The Generalized Langevin Process: 4D perspective
	3 The Generalized Langevin Process: the gravity dual perspective
	3.1 Review of gauge/gravity duality
	3.2 The trailing string picture of quark diffusion
	3.3 Dressed Langevin correlators


