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PHENOMENOLOGY OF DILATON IN A CHIRAL
LINEAR SIGMA MODEL WITH VECTOR MESONS∗
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In the framework of the U(2)R × U(2)L symmetric linear sigma model
with (axial)vector mesons generalized by including a dilaton field, we study
the phenomenology of the scalar–isoscalar resonances below 2 GeV. It turns
out that in our favoured scenario, the resonance f0(1370) is predominantly
a q̄q state and f0(1500) is predominantly a glueball state. Additionally,
we are able to calculate the value of the gluon condensate, which is in
agreement with lattice QCD results.
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1. Introduction

One of the interesting issues in particle physics is the overpopulation in
the scalar–isoscalar channel, IG(JPC) = 0+(0++) in the energy region be-
low 2 GeV. In this region, there are currently five states listed by PDG [1].
Below 1 GeV, there are two resonances: f0(500) and f0(980). Above 1 GeV,
there are the three resonances f0(1370), f0(1500) and f0(1710). The na-
ture of these resonances is not completely understood up to the present
day. In this work, we consider an Nf = 2 [2, 3] effective Lagrangian with
two scalar–isoscalar states, where one of them is a quark–antiquark state,
|n̄n〉 ≡

(
ūu+ d̄d

)
/
√

2, and the other one is a scalar glueball, |G〉 ≡ gg.
The experimental verification of glueballs is extremely challenging due to
the mixing with ordinary q̄q mesons but the proof of their existence would
be a further important achievement in QCD. Furthermore, the proper can-
didate for a glueball should possess the following features: (i) Due to the
‘democratic’ coupling of the gluons to all kinds of quarks, the glueball should
be flavour blind. (ii) The decay width should be rather narrow because the

∗ Presented at the Workshop “Excited QCD 2012”, Peniche, Portugal, May 6–12, 2012.

(1071)



1072 S. Janowski

large-Nc behaviour shows that glueball decays scales as N−2
c , thus they are

stronger suppressed than decays of ordinary mesonic q̄q states, which only
scale as N−1

c . The flavour blind decay behaviour of the resonance f0(1500)
with a mass of Mf0(1500) = (1505 ± 6) MeV and its narrow decay width,
Γf0(1500) = (109± 7) MeV [1], make it a proper scalar glueball candidate.
The main aim of this study is to investigate the mixing between the scalar–
isoscalar glueball and the scalar–isoscalar quark–antiquark state in order to
make some statements about the nature of the scalars–isoscalars below the
mass of 2 GeV.

As shown in Ref. [3] on which this proceeding is based on, our most
successful scenario is realized by the assignment: |G〉 ∼= f0(1500) and |q̄q〉 ∼=
f0(1370). Moreover, due to the new available determination of the resonance
f0(500) [1] (Mf0(500) = (400–550) MeV and Γf0(500) = (400–700) MeV) we
tested again the following two alternative scenarios: (1) |G〉 ∼= f0(1500)
and |q̄q〉 ∼= f0(500) and (2) |G〉 ∼= f0(1710) and |q̄q〉 ∼= f0(500) but both
of them are still inconsistent with the experimental data and hence not
favoured. Additionally, by the use of the phenomenology of mesons only, we
are capable to calculate the value of the gluon condensate,

〈
αs
π G

a
µνG

a,µν
〉

which agrees to the lattice QCD results.

2. The model

The effective model under study is based on the chiral symmetry
U(Nf )R × U(Nf )L and on the trace anomaly of QCD. It is composed of
the quark–antiquark Lagrangian (see Ref. [2]) and of the dilaton Lagrangian
describing the trace anomaly (see Ref. [3] and references therein). The latter
one reads

Ldil =
1

2
(∂µG)2 − 1

4

m2
G

Λ2

(
G4 ln

∣∣∣∣GΛ
∣∣∣∣− G4

4

)
, (1)

where G is the scalar dilaton/glueball field [4] and Λ an energy scale. The
minimum of the potential in Eq. (1) is given by G0 = Λ, and after shift-
ing the dilaton field, G → G0 + G, a massive particle occurs, which cor-
responds to the scalar glueball. According to lattice QCD [5] its mass is
about mG ∼ 1.6 GeV. The logarithmic term breaks the dilatation symme-
try, xµ → λ−1xµ, explicitly and this leads to the divergence of the corre-
sponding current: ∂µJ

µ
dil = T µ

dil, µ = −1
4m

2
GΛ

2. In the chiral limit (neglecting
the U(1)A anomaly) the energy scale Λ in Eq. (1) is the only dimensionful
parameter of the effective model. Furthermore, we require that the effective
Lagrangian must be finite for every finite value of the gluon condensate G0.
This implies that in the chiral limit all other terms have dimension

[
E4
]

in order to ensure dilatation invariance. Thus, the full effective Lagrangian
reads:
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L=Ldil+Tr

[
(DµΦ)†(DµΦ)−m2

0

(
G

G0

)2

Φ†Φ−λ2

(
Φ†Φ

)2
]
−λ1

([
TrΦ†Φ

])2

+c1

[
det(Φ)− det

(
Φ†
)]2

+ Tr
[
H
(
Φ† + Φ

)]
− 1

4
Tr
[
(Lµν)2 + (Rµν)2

]
+
m2

1

2

(
G

G0

)2

Tr
[
(Lµ)2 + (Rµ)

]2
+
h1

2
Tr
[
Φ†Φ

]
Tr [LµL

µ +RµR
µ]

+h2Tr
[
Φ†LµL

µΦ+ ΦRµR
µΦ†
]

+ 2h3Tr
[
ΦRµΦ

†Lµ
]
, (2)

where the (pseudo)scalar and the left- and the right-handed (axial)vector
d.o.f. are organized in multiplets. The explicit form of these multiplets in
the case of Nf = 2 is the following: Φ = (σ + iηN) t0 + (~a0 + i~π) · ~t , Lµ =

(ωµ+fµ1 ) t0+(~ρµ+~aµ1 )·~t andRµ = (ωµ−fµ1 ) t0+(~ρµ−~aµ1 )·~t , where t0, ~t are the
corresponding generators. The assignment of the fields in (2) is as follows:
The pseudoscalar fields ~π and ηN ≡ (uu+dd)/

√
2 withmηN = 716 MeV [2, 6]

represent the pions [1] and the nonstrange part of the η and η′ mesons,
respectively. The scalar–isoscalar field, σ ≡

(
ūu+ d̄d

)
/
√

2, represents the
nonstrange quark–antiquark state. It turns out that the resonance f0(1370)
is favoured to be a predominantly q̄q state [2]. Therefore, we identify σ with
the resonance f0(1370), but we also assign it to the resonance f0(500) in
order to test all possible scenarios. Corresponding to the study of Ref. [2], the
scalar–isovector field ~a0 represent the resonance a0(1450). Finally, the vector
fields ωµ and ~ρ µ are assigned to the ω(782) and ρ(770), respectively, and the
axialvector fields fµ1 and ~a µ1 to the f1(1285) and a1(1260), respectively [1].
Note, the mass of a1(1260) given by PDG is only an estimate. According to
Ref. [7], we fixed the mass of ma1 to 1050 MeV. After shifting the scalar–
isoscalar fields σ = (ūu+ d̄d)/

√
2 and G = gg by their vacuum expectation

values, σ → σ + φ and G → G + G0, a bilinear mixing term ∼ σG in
(2) occurs. This required a diagonalization of the corresponding effective
Lagrangian (realized by a SO(2) rotation) in order to obtain the physical
fields σ′ and G′

(
σ′

G′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
σ
G

)
, (3)

where θ = 1
2 arctan

[
−4 φ

G0

m2
0

M2
G−M2

σ

]
is the quarkonium-glueball mixing an-

gle.
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3. Results and discussion

The model in Eq. (2) contains ten free parameters: m0, λ1, λ2, m1, g1,
c1, h, h̃ = h1 + h2 + h3, mG, Λ =

√
11C2/(2mG), where C represents the

gluon condensate. Once we used the masses of π, ρ(770), mηN , and ma1 as
well as the pion decay constant fπ, we are left with four free parameters:
C, m1, Mσ and mG. We obtained them by a χ2 analysis using the five
experimental quantities of Table I (details in Ref. [3]).

TABLE I

Fit in the scenario {σ′, G′} = {f0(1370), f0(1500)}.

Quantity Fit [MeV] Experiment [MeV]

Mσ′ 1191± 26 1200–1500
MG′ 1505± 6 1505± 6
G′ → ππ 38± 5 38.04± 4.95
G′ → ηη 5.3± 1.3 5.56± 1.34
G′ → KK̄ 9.3± 1.7 9.37± 1.69

3.1. Scenario with G′ ≡ f0(1500) and σ′ ≡ f0(1370)

Our best fit is obtained for the assignment {σ′, G′}={f0(1370), f0(1500)}.
We used as input for the χ2 analysis the following quantities according to [1]:
masses of the resonances f0(1500) and f0(1370) (for which we used the mean
value M ex

σ′ = (1350 ± 150) MeV due to the wide mass range of this reso-
nance) and the three well-known decay widths of f0(1500): Γf0(1500)→ππ,
Γf0(1500)→ηη and Γf0(1500)→KK̄ (see Table I).

The value of the quarkonium-glueball mixing angle is θ = (29.7± 3.6)◦.
This implies that the resonance f0(1500) consists to 76% of a glueball and
to the remaining 24% of a quark–antiquark state. In the case of f0(1370),
we obtain an inverted situation. An important outcome of our fit is the
value of the gluon condensate, C = (699± 40) MeV, which is in agreement
with lattice QCD results [8]. Note that the gluon condensate is an essential
quantity of QCD and we obtained its numerical value by use of experimen-
tal data. Further consequences and predictions are given in Table II. The
decay of f0(1500) into 4π through the intermediate state of ρρ mesons is
calculated by using the ρ spectral function. Our result is about half of the
experimental one. We expect that the intermediate state consisting of two
f0(500) resonances also contributes in this decay channel but this resonance
is not yet included in the model. The decays of the resonance f0(1370) are
in agreement with the experimental data regarding the full decay width:
Γf0(1370) = (200–500) MeV [1], where our result is around Γσ′ ' 360 MeV.
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Note that the inclusion of the (axial)vector d.o.f. was crucial in order to
obtain the presented results [2, 9]. The artificial decoupling of (axial)vector
states would generate a, by far too wide, f0(1370) state. For this reason,
the glueball-quarkonium mixing scenario above 1 GeV has been previously
studied only in phenomenological models with flavour symmetry [10, 11] but
not in the context of chirally invariant models. In Ref. [3], we also investi-
gated the scenario {σ′, G′} = {f0(1370), f0(1710)} and we have found that
it is not favoured by experimental data.

TABLE II

Further results regarding the σ′ ≡ f0(1370) and G′ ≡ f0(1500) decays.

Quantity Fit [MeV] Experiment [MeV]

G′ → ρρ→ 4π 30 54.0± 7.1
G′ → ηη′ 0.6 2.1± 1.0
σ′ → ππ 284± 43 —
σ′ → ηη 72± 6 —
σ′ → KK̄ 4.6± 2.1 —
σ′ → ρρ→ 4π 0.09 —

3.2. Scenarios with σ′ ≡ f0(500)

We have tested the assignments {σ′, G′} = {f0(500), f0(1500)} and
{σ′, G′} = {f0(500), f0(1710)} using the new available experimental data
of the f0(500) resonance [1]. We used for the calculation the mean value of
its mass,M ex

σ′ = (475±75) MeV. In both assignments, the mixing angle turns
out to be small (. 13◦) and this implies that the state f0(500) is almost a
pure quarkonium. The problem of these scenarios is that the decay into two
pions is too narrow, Γσ′→ππ . 180 MeV (as already found in Ref. [3]), in
comparison to the experimental one, Γf0(500)→ππ = (400–700) MeV. We thus
confirm our result in Ref. [3] that the scenarios with the resonance f0(500)
as a quarkonium state are not favoured.

4. Conclusions and outlook

We have used a chiral linear sigma model with (axial)vector mesons
and a scalar glueball to study the phenomenology of the scalar–isoscalar
states below 2 GeV. The best agreement with the present experimental
data is reached when the resonance f0(1500) is predominantly identified
with a glueball state, |G〉 ≡ gg and f0(1370) with a quark–antiquark state,
|n̄n〉 ≡

(
ūu+ d̄d

)
/
√

2. Scenarios in which f0(500) is predominantly a
quark–antiquark state show discrepancies with the experiment.
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Ongoing works are the full inclusion of strangeness, Nf = 3 [12] and
eventually the inclusion of a nonet of tetraquarks [13]. This may enable us
to describe a general mixing scenario of all five scalar–isoscalar states below
the mass of 2 GeV listed by PDG [1].

The author thanks D. Parganlija, F. Giacosa and D.H. Rischke for co-
operation and useful discussions and H-QM and HGS-HIRe for funding.
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