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We investigate the phase diagram of the so-called Polyakov–Nambu–
Jona-Lasinio (PNJL) model at finite temperature and nonzero chemical
potential. The calculations are performed in the light and strange quark
sectors (u, d, s) which includes the ’t Hooft instanton induced interaction
term that breaks the axial symmetry, and the quarks are coupled to the
(spatially constant) temporal background gauge field. On one hand, a spe-
cial attention is paid to the critical end point (CEP). The strength of the
flavor-mixing interaction alters the CEP location, since when it becomes
weaker the CEP moves to low temperatures and can even disappear. On
the other hand, we also explore the connection between QCD, a nonlocal
Nambu–Jona-Lasinio type model and the Landau gauge gluon propaga-
tor. Possible links between the quenched gluon propagator and low energy
hadronic phenomenology are investigated.
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1. The phase diagram in the context of the PNJL model

Chiral symmetry breaking and confinement are two of the most impor-
tant features of quantum chromodynamics (QCD). Chiral models like the
Polyakov–Nambu–Jona-Lasinio (PNJL) model have been successful in ex-
plaining the dynamics of spontaneous breaking of chiral symmetry and its
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restoration at high temperatures and densities/chemical potentials. The
PNJL model also plays an interesting role in the investigation of the QCD
phase structure. Understanding the properties of matter at finite tempera-
tures and densities is one of the most important goals from both the theo-
retical and experimental point of view. For example, the critical end point
of QCD, proposed at the end of the eighties, is still a very important subject
of discussion nowadays: indeed its existence and location is one of the main
goals in SPS at CERN and in RHIC at BNL [1].

The NJL model describes interactions between constituent quarks, giv-
ing the correct chiral properties; static gluonic degrees of freedom are then
introduced in the NJL Lagrangian, through an effective gluon potential in
terms of Polyakov loops, with the aim of taking into account features of both
chiral symmetry breaking and deconfinement. The coupling of the quarks
to the Polyakov loop leads to the reduction of the weight of quark degrees
of freedom as the critical temperature is approached from above, which is
interpreted as a manifestation of confinement and is essential to reproduce
lattice results.

Our calculations are performed in the framework of an extended SU(3)f
PNJL Lagrangian, which includes the ’t Hooft instanton induced interaction
term that breaks the UA(1) symmetry, and the quarks are coupled to the
(spatially constant) temporal background gauge field Φ [2, 3]

L = q̄(iγµDµ − m̂)q + 1
2 gS

8∑
a=0

[
( q̄ λa q )2 + ( q̄ i γ5 λ

a q )2
]

+gD {det [q̄ (1 + γ5) q] + det [q̄ (1− γ5) q]} − U
(
Φ[A], Φ̄[A];T

)
.(1)

The covariant derivative is defined as Dµ = ∂µ − iAµ, with Aµ = δµ0A0

(Polyakov gauge); in Euclidean notation A0 = −iA4. The strong coupling
constant g is absorbed in the definition of Aµ(x) = gAµa(x)λa2 , where Aµa is
the (SU(3)c) gauge field and λa are the (color) Gell-Mann matrices.

The effective potential for the (complex) field Φ adopted in our parame-
trization of the PNJL model reads

U
(
Φ, Φ̄;T

)
T 4

= −a (T )

2
Φ̄Φ+ b(T )ln

[
1− 6Φ̄Φ+ 4

(
Φ̄3 + Φ3

)
− 3

(
Φ̄Φ
)2]

, (2)

where

a (T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2

and b(T ) = b3

(
T0
T

)3

. (3)

The parameters of the effective potential U are given by a0 = 3.51,
a1 = −2.47, a2 = 15.2 and b3 = −1.75. When quarks are added, the pa-
rameter T0, the critical temperature for the deconfinement phase transition
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(that manifests itself as a breaking of the center symmetry) within a pure
gauge approach, was fixed to 270MeV, according to lattice findings. This
choice ensures an almost exact coincidence between chiral crossover and de-
confinement at zero chemical potential, as observed in lattice calculations.

The parameters of the NJL sector are: mu = md = 5.5MeV, ms =
140.7MeV, gSΛ2 = 3.67, gDΛ5 = −12.36 and Λ = 602.3MeV, which are
fixed to reproduce the values of the coupling constant of the pion, fπ =
92.4MeV, and the masses of the pion, the kaon, the η and η′, respec-
tively, Mπ = 135MeV, MK = 497.7MeV, Mη = 514.8MeV and Mη′ =
960.8MeV [4].

The inclusion of the Polyakov loop effective potential U(Φ, Φ̄;T ), that
can be seen as an effective pressure term mimicking the gluonic degrees
of freedom of QCD, is required to get the correct Stefan–Boltzmann limit.
Indeed, in the NJL model the ideal gas limit is far to be reached due to the
lack of gluonic degrees of freedom.

In Fig. 1 (left panel), we present the phase diagram of the PNJL model.
As the temperature increases the chiral transition is first order and persists
up to the CEP. At the CEP the chiral transition becomes a second order
one. The location of the CEP is found at TCEP = 155.80MeV and µCEP =
290.67MeV (ρCEP

B = 1.87ρ0). For temperatures above the CEP there is a
crossover whose location is calculated making use of ∂2 〈q̄q〉 /∂T 2 = 0, i.e.
the inflection point of the quark condensate 〈q̄q〉.

The transition to the deconfinement is given by ∂2Φ/∂T 2 = 0, and is
represented by the hatched (magenta) line. The surrounding shaded area
that limits the region where the crossover takes place is determined by the
extremes of the susceptibility ∂Φ/∂T .
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Fig. 1. Phase diagram in the SU(3) PNJL model: the location of the CEP is
found at TCEP = 155.80MeV and µCEP = 290.67MeV (see details in the text).
Dependence of the location of the CEP on the strength of the ’t Hooft coupling
constant gD.
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Due to the importance of the location of the CEP from the experimental
point of view, let us investigate the influence of other parameters which can
lead to a significant change in the CEP’s localization.

It is well known that the UA(1) anomaly has big influence on the behavior
of several observables, so it is demanding to investigate possible changes in
the location of the CEP in the (T, µ) plane when the anomaly strength
is modified. The axial UA(1) symmetry is broken explicitly by instantons,
leaving a SU(Nf )⊗ SU(Nf ) symmetry which determines the chiral dynamics.
Since instantons are screened in a hot or dense environment, the UA(1)
symmetry may be effectively restored in matter. So, the change of the UA(1)
anomaly strength has a strong influence on the localization of the CEP in
the (T, µ) plane.

In Fig. 1 (right panel), we show the location of the CEP for several values
of gD compared to the results for gD0 , the value used for the vacuum. As
already pointed out by Fukushima in [2], the location of the CEP depends on
the value of gD. The results show that, in the framework of this model, the
existence or not of the CEP is determined by the strength of the anomaly
coupling, the CEP getting closer to the µ axis as gD decreases. As the
strength of the flavor-mixing interaction becomes weaker, the CEP moves
to low temperatures and can even disappear.

2. Low energy physics and the gluon propagator

In this section, we explore the connection between QCD, a nonlocal
Nambu–Jona-Lasinio type model and the Landau gauge gluon propaga-
tor [5].

The interaction between quarks and gluons in QCD reads

LψψA = g ψ γµAaµ
λa

2
ψ . (4)

Expanding the term containing LψψA up to g2 and integrating the gluon
fields (see [5] for details), the theory becomes an effective nonlocal fermionic
theory

S
[
ψ,ψ

]
=

∫
d4xd4y

{
ψ(y) δ(y − x) (iγµ∂µ −m)ψ(x)

+
g2

8
J(x, y)D(x− y)J(y, x)− g2

8
J5(x, y)D(x− y)J5(y, x)

}
(5)

with J(x, y) = ψ(x)ψ(y) and J5(x, y) = ψ(x)γ5ψ(y) and D(x, y) is the gluon
propagator form factor.
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First principles calculations of the gluon propagator have been performed
using lattice QCD and DSE (see for example [6] and references therein). The
momentum space propagator

D
(
p2
)

= Z

(
p2
)2κ−1(

p2 + Λ2
QCD

)2κ (6)

is able to describe both the scaling (κ > 0.5) and decoupling (κ = 0.5)
infrared DSE solutions and the lattice data up to p ∼ 800 MeV; ΛQCD

stands for an infrared mass scale.
Let us define the dimensionless form factor in momentum space as

f
(
p2
)

= Λ2D
(
p2
)

=
Λ2

p2

(
p2

p2 + Λ2
QCD

)2κ

θ(Λ− p) . (7)

The constant Z in Eq. (6) will be included in the definition of the cou-
pling constant G, which multiplies the quark currents of the nonlocal theory.
G carries the dimension of a length squared. In f(p2), Λ is the cut-off. In a
first step, we assume ΛQCD = Λ. The form factor f(p2) is shown in Fig. 2
(left panel) together with typical form factors considered in the literature.
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Fig. 2. Form factors as a function of p. The figure includes typical form factors
used in previous studies. Mgluon(Λ) required to reproduce the experimental Γπ→γγ .

Demanding the nonlocal model to reproduce the experimental values
for Mπ, fπ and Γπ→γγ , with a cut-off Λ = ΛQCD = 800MeV, we obtain
mq = 4.205MeV, −〈q̄q〉1/3 = 271.1MeV, GΛ2 = 7.491 and κ = 0.529. The
presented results favor κ > 0.5. Now we investigate the decoupling type of
propagator

D
(
p2
)

=
Z

p2 +M2
gluon

, (8)
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where Mgluon takes the role of ΛQCD and can be interpreted as an effec-
tive gluon mass. Requiring the model to reproduce the same experimental
quantities as before, we find Mgluon within typical values found in the lit-
erature, but with a strong dependence with the cut-off. In fact, Mgluon

is a linear function of Λ — see Fig. 2, right panel. In what concerns the
quark condensate, the model shows that 〈qq〉 increases with Mgluon, i.e.
with the cut-off Λ. In order to reproduce the experimental value of the
condensate, i.e. to have (−〈q̄q〉)1/3 = 270MeV, it turns out that the gluon
mass is Mgluon = 878MeV for Λ = 800MeV. Therefore, we conclude that
low energy physics does not distinguish between the so-called decoupling
and scaling solutions of the Dyson–Schwinger equations. This result means
that, provided that the model parameters are chosen appropriately, one is
free to choose any of the above scenarios.

Finally, it is interesting to note that the model considered here is chiral
invariant and satisfies the GMOR relation at the 1% level of precision.

As future work, we will generalize the results to nonzero temperature
(this requires modeling the gluon propagator at finite temperature by a
functional form compatible with both Dyson–Schwinger and lattice QCD
results) which will allow us to investigate the meson properties at finite
temperature as probes for the chiral symmetry restoration.

Work supported by projects CERN/FP/116356/2010 and PTDC/FIS/
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the UE/FEDER through the Programme COMPETE — “Programa Opera-
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