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We present the new results of the Wuppertal–Budapest Lattice QCD
Collaboration on flavor diagonal and non-diagonal quark number suscepti-
bilities with 2+1 staggered quark flavors, in a temperature regime between
125 and 400 MeV. A Symanzik improved gauge and a stout-link improved
staggered fermion action is utilized; the light and strange quark masses are
set to their physical values. Lattices with Nt = 6, 8, 10, 12, 16 are used. We
perform a continuum extrapolation of all observables under study. Prelim-
inary results for charm quark susceptibilities are also presented, with the
charm quark treated at the partially quenched level.
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1. Introduction

Correlations and fluctuations of conserved charges have been proposed
long ago [1, 2] as possible candidates to signal the QCD phase transition [3].
They can be obtained as linear combinations of quark number susceptibili-
ties which can be calculated on the lattice at zero chemical potential [4, 5].
These observables can give us an insight on the nature of the matter under
study [4, 6]. Indeed, diagonal susceptibilities measure the response of the
quark number density to a change in the quark chemical potential, showing
a rapid rise in the vicinity of the phase transition. Non-diagonal susceptibili-
ties give us information about the correlation between different flavors. They
are supposed to vanish in a non-interacting quark-gluon plasma (QGP), yet
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being non-zero in perturbative QCD at large temperatures due to the pres-
ence of flavor-mixing diagrams [7]. A quantitative analysis of this observ-
able allows one to get an insight on the presence of bound states in the
QGP [8]. Analogously, one can obtain information about the presence of
bound states in the QGP from the baryon-strangeness correlator, proposed
to this purpose in Ref. [9]. Quark number susceptibilities also allow to ex-
pand thermodynamic quantities in Taylor series (which is a truncation of
the full multiparameter reweighting method [10, 11]) around µ = 0 [12].

In the present contribution, we show the results of our collaboration on
some of these observables, with 2 + 1 dynamical staggered quark flavors, in
a temperature regime between 125 and 400 MeV [13]. The light and strange
quark masses are set to their physical values, with a ratio ms/mu,d = 28.15.
Lattices with Nt = 6, 8, 10, 12, 16 are used. Continuum extrapolations are
performed for all observables under study. We compare our results to the
predictions of the HRG model with resonances up to 2.5 GeV mass at small
temperatures, and of the Hard Thermal Loop (HTL) resummation scheme
at large temperatures, when available. Preliminary results on charm quark
number susceptibilities are also shown, for Nt = 10 and with the charm
quark treated at the partial-quenching level.

2. Details of the lattice simulations

The lattice action is the same as we used in [14, 15], namely a tree-level
Symanzik improved gauge, and a stout-improved staggered fermionic action
(see Ref. [16] for details). The stout-smearing [17] yields an improved dis-
cretization of the fermion-gauge vertex and reduces a staggered artefact, the
so-called taste violation (analogously to ours, an alternative link-smearing
scheme, the HISQ action [18] suppresses the taste breaking in a similar way.
The latter is used by the HotQCD Collaboration in its latest studies [19–21]).
Taste symmetry breaking is a discretization error which is important mainly
at low energies. In the staggered fermion formulation, hadron masses are
not unique at any finite lattice spacing [22]. Each continuum hadron state
has a corresponding multiplet of states on the lattice: due to the taste sym-
metry violation the masses of these states are split. The impact of this effect
on the thermodynamic observables has been recently discussed in the HRG
framework [23, 24].

For details about the simulation algorithm we refer the reader to [15].
In analogy with what we did in [14, 15], we set the scale at the physical

point by simulating at T = 0 with physical quark masses [15] and reproduc-
ing the kaon and pion masses and the kaon decay constant. This gives an
uncertainty of about 2% in the scale setting.
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3. Observables under study

The baryon number B, strangeness S and electric charge Q fluctuations
can be obtained, at vanishing chemical potentials, from the QCD partition
function. The relationships between the quark chemical potentials and those
of the conserved charges are

µu = 1
3µB + 2

3µQ , µd = 1
3µB −

1
3µQ , µs =

1
3µB −

1
3µQ − µS . (1)

Starting from the QCD pressure,

p

T 4
=

1

V T 3
lnZ (V, T, µB, µS , µQ) , (2)

we can define the moments of charge fluctuations as follows

χBSQ
lmn =

∂ l+m+np/T 4

∂ (µB/T )
l ∂(µS/T )m∂(µQ/T )n

. (3)

In the present paper, we will concentrate on the quadratic fluctuations and
on the correlators among different charges or quark flavors. Given the re-
lationships between chemical potentials (1) the diagonal susceptibilities of
the conserved charges can be obtained from quark number susceptibilities
in the following way

χB
2 = 1

9

[
χu
2 + χd

2 + χs
2 + 2χus

11 + 2χds
11 + 2χud

11

]
,

χQ
2 = 1

9

[
4χu

2 + χd
2 + χs

2 − 4χus
11 + 2χds

11 − 4χud
11

]
,

χS
2 = χs

2 . (4)

The baryon-strangeness correlator, which was proposed in Ref. [9] as a
diagnostic to understand the nature of the degrees of freedom in the QGP,
is defined in the following way

CBS = −3〈NBNS〉〈
N2

S

〉 = 1 +
χus
11 + χds

11

χs
2

. (5)

4. Results and conclusions

The behavior of light and strange quark number susceptibilities as func-
tions of the temperature is shown in the two panels of Fig. 1. The different
symbols correspond to different values of Nt, from 6 to 16. The continuum
extrapolation is performed through a parabolic fit in the variable (1/Nt)

2,
over five Nt values from 6 to 16. The band shows the spread of the results
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Fig. 1. Left panel: Diagonal light quark susceptibility as a function of the tem-
perature. Right panel: Diagonal strange quark susceptibility as a function of the
temperature. In both panels, the different symbols correspond to different Nt val-
ues. The grey (red) band is the continuum extrapolation. The black curve is the
HRG model prediction for these observables. The dashed line shows the ideal gas
limit. The light grey (light blue) band in the left panel is the HTL prediction taken
from Ref. [7].

of other possible fits. Both observables show a rapid rise in a certain tem-
perature range, and reach approximately 90% of the ideal gas value at large
temperatures. However, the temperature around which the susceptibilities
rise is approximately 15–20 MeV larger for strange quarks than for light
quarks. The quark-mass dependence effect is even more evident in the case
of charm quark susceptibilities. We show all three on the same plot in the
right panel of Fig. 2.
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Fig. 2. Left panel: Quadratic fluctuation of baryon number as a function of the
temperature. The different dots correspond to different Nt values. The grey (red)
band is the continuum extrapolation. The black curve is the HRGmodel prediction.
The dashed line shows the ideal gas limit. Right panel: Comparison between
light, strange and charm quark number susceptibilities. For the first two the fully
dynamical, continuum extrapolated result is given. For the third one, the charm
quark is treated at the partially quenched level and results are presented for the
smallest lattice spacing under study, corresponding to Nt = 12.



Correlations and Fluctuations from Lattice QCD: Wuppertal–Budapest . . . 1127

The non-diagonal us susceptibility measures the degree of correlation
between different flavors. This observable vanishes in the limit of an ideal,
non-interacting QGP. We show our result in the left panel of Fig. 3. χus

11 is
non-zero in the entire temperature range under study. It has a dip in the
vicinity of the transition, where the correlation between u and s quarks turns
out to be maximal. It agrees with the HRG model prediction in the hadronic
phase. A quantitative comparison between lattice results and predictions for
a purely partonic QGP state can give us information about the probability of
bound states survival above Tc [8]. The baryon-strangeness correlator CBS

defined in Eq. (5) is supposed to be equal to one for a non-interacting QGP,
while it is generally smaller than one in a hadronic system. We show our
result for this observable in the right panel of Fig. 3. For small temperatures
it agrees with the HRG model result, and it shows a rapid rise across the
phase transition.

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 150  200  250  300  350  400

χ
1
1
u
s

T [MeV]

SB limit

Nt=6

Nt=8

Nt=10

Nt=12

Nt=16

cont.

HRG

 0

 0.2

 0.4

 0.6

 0.8

 1

 150  200  250  300  350  400

C
B

S

T [MeV]

SB limit

Nt=6

Nt=8

Nt=10

Nt=12

Nt=16

cont.

HRG

Fig. 3. Left panel: Non-diagonal u–s correlator as a function of temperature. Right
panel: Baryon-strangeness correlator as a function of temperature. In both panels,
the different symbols correspond to different Nt values, the grey (red) band is the
continuum extrapolation and the black, solid curve is the HRG model result. The
ideal gas limit is shown by the black, dashed line.

Quadratic baryon number fluctuations can be obtained from the above
partonic susceptibilities through Eqs. (4). We show our results for this
observable in Fig. 2. In the low-temperature, hadronic phase we have a
very good agreement with the HRG model predictions. In the vicinity of
the phase transition, this quantity shows a rapid rise with temperature. At
large temperature it reaches approximately 90% of the ideal gas value.
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