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We explore the performance of CUDA in performing Landau gauge
fixing in Lattice QCD, using the steepest descent method with Fourier
acceleration. The code performance was tested in a Tesla C2070, Fermi
architecture. We also present a study of the string tension at finite tem-
perature in the confined phase. The string tension is extracted from the
colour averaged free energy and from the colour singlet using Landau gauge
fixing.

DOI:10.5506/APhysPolBSupp.5.1135
PACS numbers: 11.15.Ha, 12.38.Gc

1. Introduction

The string tension σ(T ) is a relevant order parameter to study confine-
ment. While above the deconfinement temperature Tc the simplest order
parameter is the Polyakov loop, below Tc the expectation value of a single
Polyakov loop vanishes. Below Tc, to study the decrease of confinement
with T a new order parameter must be used, and we use the string tension.

The existing lattice QCD results for the string tension critical curve have
been computed by the Bielefeld group [1] and Cardoso et al. [2], Fig. 1, who
have studied in detail the heavy quark potential, from the colour average free
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energy, at finite temperature in the confined phase. Their results confirmed a
first order deconfinement phase transition, as expected for SU(3). Bicudo [3]
compared the string tension points obtained by Bielefeld group [1] with dif-
ferent order parameter curves and found empirically that the ferromagnetic
critical curve is the one closer to the Bielefeld data, Fig. 1.

In Fig. 1, we show the results for the string tension at finite temperature,
for more details see [2]. Near the phase transition, it is necessary to analyse
the histogram of the Polyakov loop history, if a double peak structure is
found in the histogram then there are configurations in the wrong phase.
In Fig. 1 (a) and Fig. 1 (b), we show the results with and without those
contaminated configurations, respectively.
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Fig. 1. String tension, σ/σ0, as a function of temperature for lattices 483 × Nt =

4, 6, 8, 12, see [2], combined with the results from the Bielefeld group, [1]. The
black line corresponds to the ferromagnet magnetizationM/Msat critical curve, [3].
(a) string tension with contaminated configurations near the phase transition and
(b) string tension with removed contaminated configurations.

In this paper, we will study the string tension extracted from the singlet
energy

e−Fsinglet(r,T )/T+C = 1
3

〈
Tr
(
W (~r )W †(0)

)〉
, (1)

whereW (.) is the temporal Wilson line. However, this is not gauge invariant
and, therefore, we must fix the gauge. Here, we will use the Landau gauge
fixing using the steepest descent method with Fourier acceleration, [4, 5].
In order to improve the signal-to-noise-ratio, we apply the multi-hit method
before the Landau gauge fixing.
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In Sec. 2 we discuss the CPU and GPU implementation of the Landau
gauge fixing algorithm. In Sec. 3, we show the benchmark results and the
string tension results in the Landau gauge extracted from the singlet energy.
In Sec. 4, we conclude.

2. Parallel implementation of the Landau gauge fixing

2.1. CPU implementation

The MPI parallel version was implemented in C++, using the machinery
provided by the Chroma library [6]. The Chroma library is built on top of
QDP++, a library which provides a data-parallel programming environment
suitable for Lattice QCD. The use of QDP++ allows the same piece of code
to run both in serial and parallel modes. For the Fast Fourier transforms,
the code uses PFFT, a parallel FFT library written by Pippig [7]. Note that
in order to optimize the interface with the PFFT routines, we have compiled
QDP++ and Chroma using a lexicographic layout.

2.2. GPU implementation

For the parallel implementation of Landau gauge fixing on GPUs [8], we
used version 4.1 of CUDA. For the 4D dimensional lattice, we address one
thread per lattice site; using 3D thread blocks, we only need to reconstruct
the other lattice index inside the kernel. Although CUDA supports up to 3D
thread blocks [9], the same does not happen for the grid, which can be up to
2D or 3D depending on the architecture and CUDA version. Nevertheless,
the code is implemented with 3D thread blocks and for the grid, we adapted
the code for each situation. We use the GPU constant memory to put most
of the constants needed by the GPU, like the number of points in the lattice,
using cudaMemcpyToSymbol(). To store the lattice array in global memory,
we use a SOA type array as described in [10]. The main reason to do this
is due to the implementation of the FFT algorithm. The FFT is applied
for all elements of ∆(x) matrix separately. Using the SOA type array, the
FFT can be applied directly to the elements without the need of copying
data or data reordering. For the Fourier transforms, the code uses CUDA
CUFFT [11]. Since there is no direct support for 4D FFTs, we will use 2D
plus 2D FFTs with cufftPlanMany().

In order to reduce memory traffic, we can use the unitarity of SU(3)
matrices and store only the first two rows (12 real numbers) and reconstruct
the third row on the fly when needed, instead of storing it.
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3. Results

In this section, we show the benchmarks for the steepest descent Fourier
accelerated code for Landau gauge fixing in lattice QCD and the results for
the string tension in the Landau gauge extracted from the singlet energy.

The benchmark runs using the MPI implementation were performed
on the Centaurus cluster at the University of Coimbra. The Centaurus
has 8 cores per node, each node has 24 GB of RAM, with 2 intel Xeon
E5620@2.4 GHz (quad core) and has a DDR Infiniband interconnecting the
various nodes. The benchmark runs on GPU were performed at Instituto
Superior Técnico on a NVIDIA Tesla C2070, Table I, and using version 4.1
of CUDA.

TABLE I

NVIDIA’s graphics card specifications used in this work.

NVIDIA Tesla C2070

Number of GPUs 1 Global memory 6 GB
CUDA Capability 2.0 Mem. bandwidth (ECC off) 148 GB/s
Multiprocessors (MP) 14 Shared mem. (per SM) KB 48 or 16
Cores per MP 32 L1 cache (per SM) KB 16 or 48
Total # of cores 448 L2 cache (chip wide) 768KB
Clock rate 1.15 GHz ECC support yes

3.1. Performance results

In Fig. 2, we show the GPU performance, in GFlops, of the algorithm
using a 12 parameter reconstruction and the full (18 number) representation
in single and double precision. The GPU memory access using the L1 and
L2 cache and the texture memory was compared. The best performance is
achieved using texture memory and the 12 real number parametrization.

The CPU MPI implementation shows a good linear scaling against the
number of computing nodes, Fig. 3. We test the GPU (using 12 real
parametrization, texture memory and ECC off), and the CPU performance
for a 324 lattice volume and for β = 5.8, 6.0, 6.2 in double precision. In order
to have the same performance as the GPU, the CPU MPI implementation
requires 32 computing codes, i.e., 256 cores.
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Fig. 2. Performance in GFlops. (a) with ECC Off and (b) with ECC On. sp: single
precision, dp: double precision, 18real: full SU(3) matrix, 12real: 12 real para-
metrization, tex: using texture memory and cache: using L1 and L2 cache memory.
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Fig. 3. Strong scaling CPU tested for a 324 lattice volume and comparison with
the GPU for the best performance, 12 real number parametrization, ECC Off and
using texture memory in double precision.
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3.2. String tension in the Landau gauge

Fig. 4 shows the results for the singlet energy in the Landau gauge. The
singlet energy is fitted with the potential a0−a1/r+a2r, where a1 is fixed to
the Lüscher Coulomb π/12 term and a2 provides σ(T )/σ0. For T > Tc, the
string tension is zero and in agreement with the colour average free energy.
However, for T < Tc, the string tension, σ(T )/σ0, show a temperature
independent behaviour, i.e., σ ∼ 0.7σ0. The string tension extracted from
the colour singlet in Landau gauge is constant and temperature independent
in the confined phase.
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Fig. 4. Singlet energy as function of the distance in units of the zero temperature
string tension.

4. Conclusions

From all the runs using a C2070 Tesla GPU, peak performance was mea-
sured as 186/71 GFlops for single/double precision. From the performance
point of view, a run on a single GPU delivers the same performance as the
CPU code when running on 32 nodes (256 cores), if one assumes a linear
speed-up behavior.

In the Landau gauge, the string tension, at finite temperature, extracted
from the singlet energy shows a constant behaviour in the confined phase.

Our GPU code can be downloaded from the Portuguese Lattice QCD
collaboration homepage [12].
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