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In this work, we compute the color fields in the mediator plane between
a static quark and a static antiquark using quenched lattice QCD. In par-
ticular, we see the effect of the quark–antiquark distance on the flux tube.
To obtain this results, an improved multihit technique is developed and an
extend smearing technique is used. Then, we also discuss the flux-tubes
in a system composed of two quarks and two antiquarks. The ground and
first excited states fields are studied for different dispositions of the system.
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1. Introduction

This work is divided in two parts. In the first one, we will study an
isolated fundamental flux-tube in a quark–antiquark system. In the second
one, we will study the fields in a system made of two quarks and two anti-
quarks, where we can observe the interaction between two fundamental flux
tubes.

2. Chromo-fields computation

To calculate the gauge invariant squared chromoelectric and chromomag-
netic fields in the lattice, we only have to calculate the correlation of the
Wilson loop operator W which in large Euclidean time limit t→∞ should
describe the static system, with the plaquettes corresponding to each of the
fields. Concretely, we have〈

E2
i

〉
= 〈P0i〉 −

〈W P0i〉
〈W 〉

, (1)

〈
B2
i

〉
=
〈W Pjk〉
〈W 〉

− 〈Pjk〉 , (2)
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where Pµν = 1 − 1
3Tr[Uµ(s)Uν(s + µ)U

†
µ(s + ν)U

†
ν (s)]. The spatial indices

j and k complement index i. The Lagrangian density is given by L =
1
2(E

2 −B2).

3. Fundamental flux-tube

For a simple quark–antiquark singlet, the Wilson Loop operator W de-
scribes the system. We compute the chromo-fields in the mediator plane
between the quark and the antiquark, using 1100 pure gauge 324 configura-
tions with β = 6.0 . In order to improve the signal to noise ratio, we use two
techniques: an improved version of the multihit [1] and an extended spatial
smearing technique.

3.1. Signal to noise ratio improvement

In the multihit method, we replace each temporal link by its thermal

average, with its first neighbors fixed, that is U4 → U4 =
∫
dU4 U4 eβTr[U4F

†]∫
dU4 eβTr[U4F

†] .

We generalize this method by replacing each temporal link by its thermal
average with the N th neighbors fixed, that is

U4 → U4 =

∫
[DU ]Ω U4 e

β
∑
µs Tr

[
Uµ(s)F †µ(s)

]
∫
[DU ]Ω e

β
∑
µs Tr

[
Uµ(s)F †µ

] . (3)

In this way, we have an error reduction greater than the one of multihit.
To increase the ground state overlap, we use a spatial extended smearing

Ui → PSU(3)

Ui + w1

∑
j

S1
ij + w2

∑
j

S2
ij + w3

∑
j

S3
ij

 (4)

with staples S1
ij , S

2
ij and S

3
ij being given in Fig. 1.

Even using this technique we were not able to find a value of t for which
the plaquettes to Wilson Loop correlators are stable within error bars, while
still have a sufficiently high signal-to-noise ratio. To solve this, we note that
the correlator which gives the average of field 〈F 〉 should be given by the
formula 〈F 〉t = 〈F 〉∞+ b e−∆t for large values of t, with ∆ = V1− V0, being
the difference between the first excited and the ground state potentials.
To compute ∆, we use a variational basis of four levels of APE smearing,
with the potentials V1 and V0 being given by the solution of the variational
generalized eigensystem

〈Wij(t)〉cnj (t) = wn(t)〈Wij(0)〉cnj (t) , (5)
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Fig. 1. Staples used in the extended spatial smearing.

where 〈Wij〉 = 〈Oi(t)O†j(0)〉 is the correlation between the meson annihila-
tion and creation operators at time t and 0 in the smeared states i and j,
respectively.

3.2. Results and conclusions

The results for the Lagrangian density in the quark–antiquark mediator
plane are shown on the left side of Fig. 2. As can be seen, the tube flux
becomes wider as the quark–antiquark distance is increased. To estimate
the width of the flux tube we define the value w1/e by 〈L〉(w1/e) =

1
e 〈L〉(0).

The results for this are shown on the right side of Fig. 2.
It was predicted [2, 3] that the squared width w2 of this flux tube diverges

logarithmically as R→∞, that is w2 ∼ w2
0 log R

R0
, where w2. This behavior

is called “roughening”. So, we can say that the flux tube roughening has been
observed from R ∼ 0.4 fm to R ∼ 1.2 fm. However, we have not been able
yet to confirm the that the behavior is logarithmic.
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Fig. 2. Left: Lagrangian density in the mediator plane between the quark and the
antiquark. Right: Width of the flux tube w1/e as a function of R.
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4. QQQ̄Q̄ system

Now, we consider a system of two quarks Q1Q2 and two antiquarks
Q3Q4. The study of this kind of systems is important for the under-
standing of meson–meson scattering processes and the possible formation
of tetraquarks, particles made of two valence quarks and two valence anti-
quarks.

In this system, we have two linearly independent color singlets. Those
can be, for instance, the two meson states: |I〉 = 1

3 |QiQjQiQj〉 and |II〉 =
1
3 |QiQjQjQi〉, or the anti-symmetric and symmetric color states: |A〉 =
√

3
2 (|I〉 − |II〉) and |S〉 =

√
3
8(|I〉+ |II〉). In accordance with lattice results

[4, 5], the ground state could be either |I〉, |II〉 or |A〉, with the static poten-
tial being given by the flip–flop potential VFF = min(VI , VII , VT ), where VI
and VII are the two possible two-meson potentials, given by the sum of the
intra-meson potentials, and VT is the tetraquark potential, which confines
all the particles, with the confining part being proportional to the minimal
length of a fundamental string linking the four particles.

4.1. Geometries

We use the two geometries shown in Fig. 3. In both, the four particles
form a rectangle, however in one of them — the parallel — similar particles
are on the same side of the rectangle while on the other they are on opposite
corners — the anti-parallel. With the first one, we can study the tetraquark
to mesons transition, while with the second we can see the transition between
the two meson states.

Fig. 3. Left: Anti-parallel geometry. Right: Parallel geometry.

In this work, we use 1121 Quenched 243 × 48 lattice configurations with
β = 6.2. APE Smearing was applied to the spatial links, while Hyper-cubic
blocking [6] was applied to the temporal links.

4.2. Variational method

To obtain not only the ground state but also the first excited state, we
use a variational basis similar to Eq. (5) but using two different kind of
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operators. This way, the Wilson loop which appears on Eqs. (1) and (2)
is Wn = cinWijc

j
n. The two operator basis will be formed by the |I〉 and

|II〉 annihilation operators in the anti-parallel geometry and in the parallel
geometry, by the |I〉 and |A〉 [4, 5] annihilation operators. This gives the
matrix elements in Fig. 4.

Fig. 4. Left: Loops used to study the antiparallel geometry. Right: Loops used to
study the parallel geometry.

4.3. Results

The results for the Lagrangian density L in the ground state and the first
excited state are given in Figs. 5 and 6. For the ground state the system
collapses in a two meson state, when r2 � r1, as expected. Looking at the
Wilson loop composition we also conclude that when r1 = r2 the ground
state is color symmetric. The excited state is not so readily explainable.
The results for L in the parallel geometry can be seen in Figs. 7 and 8. The
results are the expected ones for the ground state, with the system passing
from a two meson state to a tetraquark state as we increase r2. We discuss
the first excited state in the conclusion.

Fig. 5. Lagrangian density for the ground state of the antiparallel geometry.

Fig. 6. Lagrangian density for the first excited state of the antiparallel geometry.
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Fig. 7. Lagrangian density for the ground state of the parallel geometry.

Fig. 8. Lagrangian density for the first excited state of the parallel geometry.

4.4. Discussion and conclusion

The results for the ground state are consistent with the flip–flop ground
state potential with the color fields dispositions being consistent with |I〉,
|II〉 or |A〉 where expected.

We can explain the excited states if we consider that the vibrational and
rotational flux tube excitations effects are negligible. Therefore, the first
excited state is orthogonal to the ground state. In that case, if we compute
the Casimir factors for this orthogonal states, as in [7], that they predict the
correct behavior of the fields, with a repulsion between particles, where we
expect it.
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