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We give an elementary discussion of parton saturation and its descrip-
tion by the effective theory of the Color Glass Condensate. We report on
progress in calculating multi-gluon correlators. The latter are necessary for
many phenomenological applications, upon some of which we briefly touch.
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1. From partons to the Color Glass Condensate

A hadron is a complex object in its rest frame as valence quarks are
accompanied by a sea of hadronic and vacuum fluctuations. Both types of
such virtual fluctuations are of non-perturbative nature and have the same
lifetime ∆tRF ∼ 1/ΛQCD, since ΛQCD is the only available energy scale. The
picture changes in the infinite momentum frame; the lifetime of the vacuum
ones remains the same (the vacuum is Lorentz invariant), but the hadronic
ones are time-dilated, that is ∆tIMF ∼ γ/ΛQCD with γ � 1, and the two
types are disentangled [1]. Probing the hadronic fluctuations is most easily
done by DIS of a lepton off the hadron. The collision time is estimated as
∆tcoll ∼ 2xP/Q2. Thus, quarks with transverse momenta k⊥ � Q, will be
“seen” by the virtual photon, since ∆tfluct ∼ 2xP/k2

⊥ & ∆tcoll.
The density of partons depends on their momenta and is determined by

the QCD dynamics. The probability for a parton in representation R with
momenta (0⊥, pz) to emit a soft gluon with (k⊥, kz = xpz) at small-x is

dP = CR
αs

(
k2
⊥
)

π2

d2k⊥
k2
⊥

dx

x
. (1)

The emission of soft and collinear gluons is favored, since it goes with a large
logarithm which may even overcome the smallness of the QCD coupling.
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Such radiative processes need to be resummed to all orders and lead to the
DGLAP and BFKL evolution equations, in lnQ2 and ln 1/x, respectively,
and the one to be used depends on the kinematics. The last factor in Eq. (1)
is present because the emitted parton is a gluon, hence the small-x tail of
the wavefunction is dominated by gluons. For a BFKL cascade generated
by a single valence quark one finds the unintegrated gluon distribution, i.e.
the number of gluons per unit rapidity Y = ln 1/x and for a given k⊥, to
increase exponentially with Y .

DGLAP and BFKL evolutions are linear and emissions from the source
partons take place independently but they lead to totally different outcomes,
cf. Fig. 1 (a). Increasing Q2, DGLAP produces more partons (for x . 0.1),
but they occupy a transverse area 1/Q2 and thus the partonic system be-
comes more dilute. It is self-consistent in the sense that linear dynamics
remains valid in the course of evolution. On the contrary, increasing ln 1/x,
BFKL produces partons typically of the same size which eventually overlap.
Beyond that point the source partons emit coherently, the BFKL equation
becomes inadequate and has to be supplemented by non-linear terms which
lead to parton saturation. A simple criterion to define saturation is via the
gluon occupation number, the number of gluons at a given x multiplied by
the area each gluon fills up and divided by the transverse hadron size. We de-
fine the saturation momentum as the line along which this occupation factor
is constant and of the order of 1/αs, namely xg(x,Q2

s (x))/[Q2
s (x)R2] ∼ 1/αs,

with R the hadron size and xg the integrated gluon distribution. Roughly,
Q2

s is increasing as a small power of 1/x [2–4], reflecting the need to stop
the exponential growth in Y discussed earlier and for a large nucleus is pro-
portional to A1/3, since xg grows with A and RA with A1/3. Cf. Fig. 1 (b).

(a) (b)

Fig. 1. (a) The partonic phase diagram and (b) the saturation momentum.
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A modern effective theory encompassing parton saturation is the Color
Glass Condensate (CGC) [1]. Color since we are dealing with QCD, glass
since there is a separation in times scales and source partons live longer
than emitted ones, and condensate since occupation numbers can be as
high as 1/αs. It describes the hadron in terms of a classical field A which
reaches values of the order of 1/g. Parton distributions are replaced with a
classical probability distribution WY [A] encoding higher-point correlations.
The evolution of this functional is quantum and obtained by summing all
orders in ᾱY , with ᾱ = αsNc/π, like in BFKL, and all orders in the field A.
One has [5–7]

〈
Ô[A]

〉
Y

=

∫
DAWY [A] Ô[A] with

∂WY [A]

∂Y
= HWY [A] , (2)

with Ô[A] a generic observable and H the JIMWLK Hamiltonian.

2. Particle production in pA collisions

The propagation of a projectile parton through the CGC is eikonal. With
the parton at transverse position x⊥ and moving along x−, the interaction
with the field Aµa = δµ+αa in covariant gauge is given by the Wilson line
V †x ≡ P exp

[
ig
∫
dx−αa(x

−,x⊥)ta
]
. We want to study particle production

in hA collisions, with h a dilute projectile hadron and A a dense target, like
a large nucleus. The partonic process is qA→ qX, cf. Fig. 2 (a), and, in the
proton fragmentation region, a large-x quark from the proton interacts with
the soft components of the nucleus via the Wilson line. The cross section is

dNq

dy d2p⊥
∼ x1fq

(
x1, p

2
⊥
) ∫

d2r⊥e
−ir⊥·p⊥

〈
Ŝx1x2

〉
Y
. (3)

Here p⊥ and y are the transverse momentum and rapidity of the produced
quark, x1fq is the quark distribution in the proton, r⊥ = x1 − x2, Ŝx1x2 =

(1/Nc) tr(V †x1Vx2) with the Wilson lines in the fundamental representation
is the “dipole” S-matrix and the average is to be taken with WY [α] of the
nucleus. The fractions x1 = p⊥e

y/
√
s and x2 = e−Y = p⊥e

−y/
√
s � 1 are

determined from the kinematics in the Born approximation. The ratio

RpA =
1

A1/3

dNh/dη d
2p⊥|pA

dNh/dη d2p⊥|pp
(4)

should be suppressed compared to unity since a big nucleus is more saturated
than a proton. RpA is measurable and fits to RHIC data from dAu collisions
are successful and predictions for the pPb ones at LHC are available [8].
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(a) (b) (c)

Fig. 2. (a) Quark production and (b), (c) quark-gluon production in pA collisions.

Similarly, we can study di-hadron correlations in hA collisions in the
forward region. One expects a suppression of the azimuthal correlation of
the two hadrons when their transverse momenta are of the order of O(Qs)
and, in fact, this has already been observed and explained by CGC at RHIC
[9, 10]. Studying the process at the partonic level one can derive the anal-
ogous to Eq. (3) cross section for the production of, e.g., a qg pair. It
is straightforward to see, from squaring Fig. 2 (b), that it is necessary to
introduce higher-point correlators involving the product of the quadrupole
Q̂x1x2x3x4 = (1/Nc) tr(V †x1Vx2V

†
x3Vx4) times a dipole. The average is to be

done at a large-Y determined by the kinematics of the process.

3. Multi-gluon correlators in JIMWLK

The JIMWLK Hamiltonian determining the QCD evolution of WY [α]
and hence of the (gauge invariant) correlators is

H = − 1

16π3

∫
uvz

Muvz

(
1 + Ṽ †uṼv − Ṽ †uṼz − Ṽ †z Ṽv

)ab δ

δαau

δ

δαbv
(5)

withMuvz = (u−v)2/[(u−z)2(z−v)2] the dipole kernel, the tilde standing
for the adjoint representation and the functional derivatives acting on the
upper and lower end-points of the Wilson lines V † and V , respectively.

One method to calculate the correlators is to reformulate Eq. (2) into a
Langevin equation [11] for a Wilson line and solve on a lattice. The other
is to construct the evolution equations for the correlators 〈Ô〉Y of interest
using Eqs. (2) and (5). The structure of the real terms (the last two) of the
Hamiltonian is such that it leads to a hierarchy of equations [12]; Hreal acting
on nWilson lines, can lead to n+2 of them. This second method is sufficient,
if, for instance, one wants to calculate single inclusive gluon production in
pA collisions, cf. Eq. (3). JIMWLK leads to the dipole equation
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∂
〈
Ŝx1x2

〉
Y

∂Y
=

ᾱ

2π

∫
z

Mx1x2z

〈
Ŝx1zŜzx2 − Ŝx1x2

〉
Y

(6)

which is interpreted in terms of projectile evolution as shown in Fig. 3 (a) at
large-Nc. One factorizes 〈ŜŜ〉Y = 〈Ŝ〉Y 〈Ŝ〉Y to get the BK equation [12, 13],
a closed equation whose solution is known semi-analytically and numerically.

Less inclusive quantities require the knowledge of higher-point correla-
tors. The quadrupole equation [14] is more involved and two representative
diagrams are shown in Figs. 3 (b) and 3 (c). Even at large-Nc, where it
becomes a closed inhomogeneous and linear equation (requiring the input
of 〈Ŝ〉Y ), the large number of transverse variables and the non-locality in
transverse space seem to be prohibitive for the possibility of a numerical
solution.

(a) (b) (c)

Fig. 3. (a) Real and virtual emission of a qq̄ pair from a dipole. (b) and (c) Similarly
from a quadrupole. The dashed line denotes the interaction with the target.

The implementation of the Langevin approach [15], lead to the finding
that the numerical data for the quadrupole are very well-described by a
Gaussian mean field approximation (MFA); an extrapolation to arbitrary Y
of the McLerran–Venugopalan (MV) model, the typical initial condition.
Such a Gaussian WY [α] involves a single kernel, hence all high-point cor-
relators are expressed in terms of the 2-point one, although there was no
a priori reason for this to happen for the, highly non-linear, JIMWLK evo-
lution.

Still, one can prove that a Gaussian approximation is a quasi-exact so-
lution to the JIMWLK equation [16, 17]. At saturation, real emissions are
suppressed and the virtual part Hvirt (the first two terms) of the Hamilto-
nian dominates. This is Gaussian, including the second term; those Wilson
lines transform the “left” derivatives to “right” ones which act on the lower
and upper end-points of the Wilson lines V † and V , respectively. We inte-
grate the kernel over z for 1/Qs � |u−z|, |v−z| � |u−v|, with the lower
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limit imposed by our approximation, while the upper gives the dominant
logarithmic contribution 2 ln[(u− v)2Q2

s ]. This would lead to a result valid
only at saturation, but doing the same approximation in Eq. (6) we find this
logarithm to be related to the logarithmic derivative of the dipole. Thus

HG =
1

4g2CF

∫
uv

d ln
〈
Ŝuv

〉
Y

dY

(
δ

δαaLu

δ

δαaLv
+

δ

δαaRu

δ

δαaRv

)
. (7)

This is a Gaussian Hamiltonian and the kernel can be most easily determined
from the BK equation. Eq. (7) is correct, at finite-Nc, at saturation by
construction and in the dilute limit as can be inspected.

HG generates evolution equations for multi-gluon correlators which are
local in the transverse plane, that is, they are ordinary differential equations
in Y with Y -dependent coefficients. A further “separability” property of the
kernel in Eq. (7) leads to correlators which are local functions in Y . For
instance, the quadrupole at large-Nc with MV model initial condition reads

〈
Q̂1234

〉
Y

=
ln
[〈
Ŝ12

〉
Y

〈
Ŝ34

〉
Y

/〈
Ŝ13

〉
Y

〈
Ŝ24

〉
Y

]
ln
[〈
Ŝ12

〉
Y

〈
Ŝ34

〉
Y

/〈
Ŝ14

〉
Y

〈
Ŝ23

〉
Y

]〈Ŝ12

〉
Y

〈
Ŝ34

〉
Y

+
ln
[〈
Ŝ14

〉
Y

〈
Ŝ23

〉
Y

/〈
Ŝ13

〉
Y

〈
Ŝ24

〉
Y

]
ln
[〈
Ŝ14

〉
Y

〈
Ŝ23

〉
Y

/〈
Ŝ12

〉
Y

〈
Ŝ34

〉
Y

]〈Ŝ14

〉
Y

〈
Ŝ23

〉
Y

(8)

(with i = xi). It obeys a mirror symmetry 〈Q̂1234〉Y = 〈Q̂1432〉Y , which holds
at finite-Nc and beyond the MFA and is a result of time-reversal symmetry,
where time stands for x− [17]. It is preserved by JIMWLK due to the
presence of both left and right derivatives and suggests that the hadron
expands symmetrically in the x− direction. At the level of the MFA only, it
is also symmetric under the charge conjugation 〈Q̂1234〉Y = 〈Q̂2341〉Y .

At finite-Nc operators mix, e.g. the phenomenologically interesting
6-point operator Q̂Ŝ mixes with two more and the equation from the matrix
diagonalization is cubic. As shown in Fig. 4, for a simple configuration the
agreement of the analytic and numerical results is excellent. Analytic ex-
pressions for multi-gluon correlators are necessary to reduce the numerical
cost for Fourier transforming expressions like Eq. (3) (and more complicated
ones, like in the double inclusive case) and obtain the desired cross sections.
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MFA Nc = 3
MFA large-Nc

Factorized Nc = 3
〈Ŝ〉3Y
JIMWLK

1−〈Ŝ〉Y

〈Ŝ
6
〉 Y
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-0.2
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1

Fig. 4. 〈Ŝ6〉Y = N2
c /(N

2
c − 1)〈Q̂1234Ŝ41 − (1/N2

c )Ŝ32〉Y with x3 = x1 and x4 = x2.
Dashed grey (red): JIMWLK from Y = 0 to 5.18 [15]. Solid black (blue): MFA
analytic result for Nc = 3 [17]. At Y = 0 JIMWLK and MFA coincide because of
the initial condition. True at any Y in the dilute and in the dense region. A tiny
difference, stabilizing soon, occurs in the transition region.

4. More properties and applications

One expects quantities to scale with Qs [19, 20]. This property, first
observed in DIS [21], extends to other quantities, like gluon production at
early times in AA collisions [18], cf. Fig. 5. In such collisions, due to final
state interactions, the CGC cannot describe spectra of produced hadrons,
but it can give more inclusive quantities, e.g. total multiplicities [1].
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Fig. 5. Scaling of the gluon spectrum [18].
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