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In this presentation, we investigate the heavy quark sector of Coulomb
gauge QCD using a leading-order heavy quark mass expansion of the QCD
action adapted from M. Neubert, Phys. Rep. 245, 259 (1994). In the limit
where the Yang–Mills sector is truncated to only include dressed two-point
functions, we show that the rainbow-ladder approximation to the gap and
Bethe–Salpeter equations is exact, and provide a direct connection between
the physical string tension and the temporal gluon propagator. Further-
more, we derive an exact solution for the four-point quark Green’s function
and show that a natural separation between the physical and unphysical
poles arises.
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1. Introduction

The Gribov–Zwanziger scenario is explicitly realized in Coulomb gauge,
as the confining force is carried by the temporal part of the gluon propa-
gator while its spatial component is suppressed in the infrared [1]. In this
context, it is pertinent to investigate the connection between the physical
(nonperturbative) string tension of a quark–antiquark pair and the under-
lying Yang–Mills interaction.

For the results presented in this paper, we use an expansion in the heavy
quark mass and a truncation excluding pure Yang–Mills vertices (while the
propagators are kept dressed non-perturbatively). In the work described
here [2, 3], we retain only the first order term in the mass expansion. We
consider the homogeneous Bethe–Salpeter equation for quark–antiquark sys-
tems and show that with our assumptions the rainbow-ladder approximation
is exact. In the second part of this presentation, we consider the four-point
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quark–antiquark Green’s functions. We present exact analytical solutions,
which exhibit an explicit separation between physical and unphysical poles.
Furthermore, we show that the physical poles of the Bethe–Salpeter equa-
tion are also singularities of the Green’s function. The results presented here
could be applied for further studies of phenomenological meson and baryon
models (as in the numerical analysis of [4]).

A complete description is beyond the scope of this proceeding, for a more
detailed and rigorous description we refer to Ref. [2, 3].

2. Quark propagator in the heavy mass limit

To work in the large mass limit, we first decompose the quark field
according to the heavy quark transformation

qα(x) = e−imx0 [h(x) +H(x)]α ,

hα(x) = eimx0
[
1 + γ0

2
q(x)

]
α

, Hα(x) = eimx0
[
1− γ0

2
q(x)

]
α

, (1)

where the h field represents “light degrees of freedom”, while the H field
represents “heavy degrees of freedom” which are integrated out. At leading
order in the 1/m expansion, the quark contribution to the QCD action
reduces to

Sq =

∫
d4x h̄ (ı∂0 + gT aAa0)h+O(1/m) . (2)

One notes that due to the form of the projectors in the decomposition (1),
there are no Dirac gamma matrices in the above expression, reflecting the
fact that in the infinite mass limit the spin degree of freedom decouple.
Further, the quark field only couples to the temporal part of the gluon, and
since there is only a time derivative at this order in the mass expansion,
there is no dependence on the quark three-momentum ~k.

The Dyson–Schwinger equation for the heavy quark propagator reads

[Wq̄q(k)]−1 =
[
W

(0)
q̄q (k)

]−1

+gT a
∫

d̄ ωWqq(ω)Γ bqqA0
(ω,−k, k − ω)W ab

A0
(k − ω) . (3)

We now insert the leading order expressions for the ingredients in this equa-
tion. The bare heavy quark propagator can be derived directly from the
action Eq. (2) and is given by

W
(0)
q̄q (k0) =

−i
k0 −m+ ıε

+O(1/m) . (4)



Quark Confinement in the Heavy Quark Limit 1181

Further, we use the fact that the gluon dressing is largely independent of
the energy [5], i.e. W ab

A0
(k) = δabWA0(~k) (this assumption is supported by

lattice findings [6]). The functional dependence on the momentum (which we
will only use at then end of this presentation) is suggested by lattice results
displaying a 1/~k2 divergence in the infrared. Within our approximation,
the quark-gluon vertex can be rewritten with the help the Slavnov–Taylor
identity in terms of two point functions as follows

Γ bqqA0
(k1, k2, k3) =

ig

k0
3

T b
{

[Wq̄q(k1)]−1 − [Wq̄q(−k2)]−1
}

+O(1/m) . (5)

From the equations (3), (5) we obtain the exact (in the leading order in the
mass expansion and using our truncation) solution for the quark propagator

[Wq̄q(k)]−1 = i

[
k0 −m−

1

2
g2CF

∫
d̄ ~ωWA0(~ω)

]
, CF =

N2
c − 1

2Nc
. (6)

Inserting this expression back in the Slavnov–Taylor equation yields for the
quark-gluon vertex

Γ dqqA0
(k1, k2, k3) = gT d +O (1/m) , (7)

which means that the temporal quark-gluon vertex remains bare nonper-
turbatively, and this implies that the gap equation reduces to the rainbow
truncation.

3. Homogeneous Bethe–Salpeter equation

We now use the results of the previous section for the full homoge-
neous Bethe–Salpeter equation for quark–antiquark bound states (depicted
in Fig. 1)

Γ (p) = −
∫

d̄ k K(p, k)Wq̄q(k+)Γ (k)Wqq(k−) . (8)

Our truncation corresponds for the Bethe–Salpeter kernel K to the ladder
approximation, K(p, k) = −g2WA0(~p−~k) [T aΓ (k)T a] (see [2] for an explicit
derivation). Writing

[T aΓ (~r )T a]αβ = CMΓαβ(~r ) , (9)

where CM is a color factor assigned to the Bethe–Salpeter vertex Γ , yet to
be identified, we find for the total energy of the q̄q pair

P0 = g2

∫
d̄ ~ωWA0(~ω)

[
CF − eı~ω·~rCM

]
. (10)
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Fig. 1. Homogeneous Bethe–Salpeter equation for quark–antiquark bound states.
Internal propagators are fully dressed, solid lines represent the quark propagator
and filled blobs represent the Bethe–Salpeter vertex function Γ . The box represents
the Bethe–Salpeter kernel K.

Assuming that the temporal gluon propagator is more infrared divergent
than 1/|~ω|, we find that CM has to be equal to CF in order to ensure
the convergence of the integral in Eq. (8). This implies that the Bethe–
Salpeter equation can only have a finite solution for color singlet states, i.e.,
Γαγ(~x) = δαγΓ (~x). Further, if we assume the infrared behavior suggested by
the lattice, WA0(~ω) = X/|~ω|4, where X is some combination of constants,
we obtain

P0 = σ|~r | (11)

with σ = g2CFX/(8π), in accordance with the results from [7]. This result
shows that there is a direct connection between the physical string tension σ
and the nonperturbative temporal gluon propagator.

4. Four-point quark–antiquark Green’s functions

In this section, we apply the results of the preceding sections to the calcu-
lation of the four point Green’s function. The diagrammatic representation
of its Dyson–Schwinger equation is given in Fig. 2.

Here, we will consider the flavor non-singlet case in the s-channel (that
is, we consider the quark and the antiquark as two distinct flavors with
the same mass) so that the terms (a), (c), (i) do not contribute. In our
approximation, diagram (b) vanishes upon performing the energy integral,
and the two-gluon two-quark vertex of term (d) can be shown to vanish using
its Slavnov–Taylor identity [3]. We then proceed by neglecting the terms
(e), (f) and (g), which contain the four-point Green’s function, and solving
the truncated equation (diagrammatically depicted Fig. 3). One can then
show that the diagrams (e), (f) and (g) cancel and hence our assumption is
consistent (see [3] for a complete derivation). A formal simplification can be
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Fig. 2. Diagrammatic representation of the Dyson–Schwinger equation for the 1PI
4-point quark–antiquark Green’s function. Blobs represent dressed 1PI 4-point
vertex, solid lines represent the quark propagator, springs denote gluon propagator
and cross denotes the tree level quark-gluon vertex.

achieved by deriving the amputated 4-point Green’s function, i.e. cutting
the quark legs. The final result for this function reads

G(4)
αγ;τη(x) =

g2

2

g1(x)

P0 − g2
∫
d̄ ~ωWA0,~ω

[
CF + ei~ω·~x

2N

]
+ iε

×

[
δαγδτη

g2(x)

P0−g2CF
∫
d̄ ~ωWA0,~ω

[
1−ei~ω·~x

]
+iε
−δαηδτγ

1

N

]
,

(12)

where g1(x) and g2(x) are functions of the separation x = |~x| associated with
the momentum ~p1 + ~p4 (notice the momentum rooting in Fig. 3). Again,
assuming an energy dependence WA0(~ω) ' 1/~ω4, we recognize in the sec-
ond fraction our expression Eq. (10) for the total energy of the quark pair.
Thus, we have provided an explicit analytical dependence of the four-point
Green’s function on the q̄q bound state energy, which in turn results from

= −

p
1

p
2 p

3

p
4

1
+p

4

1

2

−

Fig. 3. Truncated Dyson–Schwinger equation for the 1PI 4-point Green’s function
in the s-channel. Same conventions as in Fig. 2 apply.
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the homogeneous Bethe–Salpeter equation. The first fraction displays an
unphysical pole, which does not appear in the homogeneous Bethe–Salpeter
equation and can be interpreted as a part of the normalization.

5. Conclusions

In this presentation, we have used a leading-order heavy quark mass
expansion and a truncation including only the (non-perturbative) tempo-
ral gluon propagator to discuss the Dyson–Schwinger and Bethe–Salpeter
equations for quark–antiquark systems in Coulomb gauge.

We find that with these approximations, the rainbow approximation to
the quark gap equation and the corresponding ladder approximation to the
homogeneous Bethe–Salpeter equation are exact. We show that confining
(finite energy) solutions exist only for color singlet meson states, and other-
wise the system has infinite energy. Furthermore, we provide exact analytic
solutions for the four-point quark–antiquark Green’s function, and find that
the physical and nonphysical poles disentangle, the former coinciding with
the bound state solutions of the homogeneous Bethe–Salpeter equation.
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