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1. Introduction

The QCD phase diagram is expected to exhibit a rich phase structure. At
larger baryochemical potential, as achieved at the upcoming FAIR project [1]
at GSI Darmstadt, a first order phase transition is expected from model
studies [2–4]. Interesting observables could here be based on the growth of
fluctuations due to the nonequilibrium effect of supercooling leading to nu-
cleation and spinodal decomposition [5–8]. At zero baryochemical potential,
the nature of the phase transition of QCD is well understood from lattice
QCD calculations which show that it is an analytic crossover [9]. As a con-
sequence, there must be a critical point which terminates the line of first
order phase transitions.

∗ Presented at the Workshop “Excited QCD 2012”, Peniche, Portugal, May 6–12, 2012.

(1191)



1192 M. Nahrgang, S. Leupold, M. Bleicher

The analytic investigations in this nonperturbative region of the phase
transition though evolving cannot, at the present status, make deftnite state-
ments on neither the existence nor the location of a critical point [10]. Ad-
ditionally, the phase diagram of QCD can be studied experimentally in ul-
trarelativistic heavy-ion collisions. In this paper, we will concentrate on
describing effects of the phase transitions in dynamic models of heavy-ion
collisions. In thermodynamic systems, fluctuations and correlations of the
order parameter diverge at the critical point. Coupling of the order parame-
ter to measurable particles, like pions and protons, leads to an enhancement
of event-by-event fluctuations in the net-charge or net-baryon number mul-
tiplicities [11, 12]. Scanning the phase diagram in heavy-ion collisions by
varying the beam energy, one should see this enhancement in a nonmono-
tonic behavior. The key ingredient is the correlation length which becomes
infinite in thermodynamic systems at a critical point. In a realistic evolu-
tion of a heavy-ion collision, however, the growth of the correlation length is
limited by the size of the system and by the finite time, which the dynamic
systems spends at a critical point. Relaxation times also become infinite
at the critical point, a phenomenon called critical slowing down. Even if
the system is in equilibrium above the critical point it is necessarily driven
out of equilibrium by passing through the critical point. Assuming a phe-
nomenological time evolution of the correlation length with parameters from
the 3d Ising universality class, it was found that the correlation length does
not grow beyond 2–3 fm [13].

The explicit propagation of fluctuations coupled to a dynamic model
is a necessary step towards understanding the QCD phase diagram from
heavy-ion collision experiments. In chiral fluid dynamic models [14, 15], the
propagation of the fields in the chiral sector is coupled to a fluid dynamic
propagation of the constituent quarks. The expansion and cooling of the
fluid does thus drive the underlying model through the phase transition.
In the following, we present the model of NχFD [16] with a focus o the
evolution of the constituent quark masses.

2. Nonequilibrium chiral fluid dynamics

Both, the dynamics of the sigma field and of the fluid, are derived from
the quark-meson model [16]. The parameters are chosen such that chi-
ral symmetry is spontaneously broken in the vacuum, where 〈σ〉 = fπ =
93 MeV. Due to explicit symmetry breaking 〈σ〉 does not vanish exactly in
the chirally restored phase, but has a small finite value. The effective poten-
tial is given for µB = 0, where the correct vacuum value for the constituent
quark mass is obtained by a coupling of g = 3.3 between the sigma field and
the quark fields. For a qualitative study, we fix the baryochemical poten-
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tial at µB = 0 and tune the phase transition by changing the quark-meson
coupling constant. A constituent quark mass for mq,vac ' 307 MeV in the
vacuum is obtained for g = 3.3, where the transition is a crossover. For
g = 3.63 one finds a corresponding critical point at Tc ' 140 MeV by the
vanishing curvature of the effective potential at the minimum and a first
order phase transition for g = 5.5 and Tc ' 123 MeV by the appearance of
two degenerate minima. For these couplings the phenomenologically known
value of the constituent quark mass comes out wrong. We, however, focus on
the qualitative behaviour and leave the extension of the model to finite µB
to future work. We furthermore concentrate on the dynamics of the order
parameter and set the pion fields to their expectation value 〈~π 〉 = 0.

Within this approach, the Langevin equation for the sigma mean-field
reads

∂µ∂
µσ +

δVeff

δσ
+ η∂tσ = ξ , (1)

where the effective potential to fermionic one-loop level is given by

Veff(σ, T ) = U (σ)− 2dqT

∫
d3p

(2π)3
ln

(
1 + exp

(
−E
T

))
(2)

with the quark energy E2 = p2 +m2
q and the classical potential U

U (σ) =
λ2

4

(
σ2 − ν2

)2 − hqσ − U0 . (3)

The quark massmq = g〈σ〉 is generated dynamically at the phase transition.
The damping term is [16–19]
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for mσ > 2mq = 2gσeq ,

2.2/fm for 2mq > mσ > 2mπ ,

0 for mσ < 2mπ, 2mq .

(4)
The stochastic field in the Langevin equation (1) has a vanishing expectation
value

〈ξ(t)〉ξ = 0 , (5)

and the noise correlation is given by the dissipation-fluctuation theorem〈
ξ(t)ξ

(
t′
)〉
ξ
=

1

V
δ
(
t− t′

)
mση coth

(mσ

2T

)
. (6)

The local pressure and energy density of the quarks are obtained from the
thermodynamic relations

p(σ, T ) = −Veff(σ, T ) + U(σ) , e(σ, T ) = T
∂p(σ, T )

∂T
− p(σ, T ) . (7)



1194 M. Nahrgang, S. Leupold, M. Bleicher

A source term Sν in the relativistic fluid dynamic equations

∂µT
µν = Sν (8)

allows for the energy dissipation from the system to the heat bath and thus
assures energy-momentum conservation of the coupled system.

3. Evolution of the sigma field in nonequilibrium

In order to solve equations (1) and (8) numerically, we need to specify the
initial conditions for the fluid dynamic fields and the sigma field. Here, we
use averaged initial conditions from the hybrid approach to UrQMD [20].
We use the initial density profiles in the following way: We average over
many central (b < 2.75 fm) UrQMD events which gives rather smooth dis-
tributions. Due to the special relations of the equation of state in (7), we
rescale these distributions to temperatures which are well above the phase
transition in the quark-meson model at µB = 0. This way we achieve that
large parts of the system are initially in the hot temperature, i.e. the chirally
restored, phase. In Figs. 1 and 2, we compare the equilibrium expectation
values of the sigma field to those obtained in the nonequilibrium evolution.
In Fig. 1, we see a large discontinuity at the first order phase transition due
to the two degenerate minima, while the transition is smooth at the critical
point.
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Fig. 1. The expectation value of the sigma field in thermodynamic equilibrium.

Due to the dynamic evolution of the locally equilibrated fluid and the
nonequilibrium propagation of the fields, a similar correlation between tem-
perature and the sigma field is not given directly in NχFD. For every time
step, we extract the sigma field and the temperature averaged over the same
central volume and confront these values in Fig. 2. Due to the interaction of
the sigma field and the fluid, neither the evolution of the sigma field average
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Fig. 2. The volume averaged sigma field confronted to the volume averaged tem-
perature in a nonequilibrium dynamic system.

nor that of the temperature average is monotonic. Therefore, we observe a
double-valued behavior in Fig. 2. The discontinuity of the first order phase
transition is washed out and we can clearly observe a region of strong su-
percooling. Here the temperature is below the transition temperature but
large parts are still in the chirally restored phase. Only after the systems
starts to relax, which leads to reheating [21, 22], a steeper increase of 〈σ〉 at
the transition temperature is seen. This is the remnant of the discontinuity
in the thermodynamic system. In the vicinity of the critical point, both
the sigma field and the temperature start to oscillate, which originates from
the small sigma mass. Here the potential has a very small curvature and
the damping vanishes locally, as given by equation (4). This facilitates the
strong oscillations observed. The sigma field imprints its oscillations onto
the temperature which amplifies the oscillations in Fig. 2.

4. Summary

We investigated the nonequilibrium effects on the evolution of the sigma
field and the corresponding temperature of the system within NχFD ap-
plying initial conditions from UrQMD. The relaxation of the sigma field
proceeds very differently in a critical point and a first order phase transi-
tion scenario. Plotting the volume averaged sigma field versus the averaged
temperature in the same volume, we could observe the supercooling in the
scenario with a first order phase transition and strong oscillations in the
critical point scenario. It will be interesting to study the influence of this
effect in coupling to the confinement–deconfinement phase transition. Work
including the Polyakov-loop is in progress [23].
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