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Since its introduction, the combined framework of the pinch technique
(PT) [1–5] and the background field method [6], known in the literature as
the PT-BFM scheme [7–9], has provided a sound theoretical basis for ad-
dressing the nonperturbative study of the QCD Green’s functions of both
the gluon as well as the ghost sector of QCD, respecting at the same time the
fundamental symmetries of the theory. Results derived within this frame-
work include, but are not limited to, the first evidence of the existence
(in the Landau gauge) of massive solutions in the properly truncated QCD
Schwinger–Dyson equations (SDEs) as found in lattice simulations [10] and
which can be interpreted in terms of a nonperturbative mass [10–12] which
tames the infrared (IR) divergences of the Green’s functions of the theory,
the study of the Kugo–Ojima function [13] and the identification of the role of
the ghost for achieving a chiral symmetry breaking pattern that provides for
dynamically generated quark masses compatible with phenomenology [14].

In this paper, I will present the latest results derived within the PT-BFM
framework (in the Landau gauge) and discuss in particular:
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• the use of the SDEs to compute the nonperturbative modifications
caused to the IR finite gluon propagator by the inclusion of a small
number of quark families [15];
• the general derivation of the full nonperturbative equation that governs

the momentum evolution of the dynamically generated gluon mass [16].

1. Unquenching the gluon propagator

As described in [15], the PT-BFM allows to develop an approximate
method for “unquenching” the (IR finite) gluon propagator, computing non-
perturbatively the effects induced by a small number of light quark families.
The procedure consists of two basic steps:

• computing the fully-dressed quark-loop diagram, using as input the
nonperturbative quark propagators obtained from the solution of the
gap equation, together with an Ansatz for the fully-dressed quark-
gluon vertex that preserves gauge-invariance [14];
• adding this result to the quenched gluon propagator obtained in large-

volume lattice simulations.

The key assumption of the method sketched above is, therefore, that the
effects of a small number of quark families to the gluon propagator may be
considered as a “perturbation” to the quenched case, of which the quark-
loop diagram constitutes the leading correction term, with the subleading
terms stemming from the (originally) pure Yang–Mills diagrams which now
get modified from the quark loops nested inside them. Thus, within the
approximations we will employ, these latter corrections are neglected, so
that one can identify (even when dynamical quarks are present) with the
quenched lattice propagator all SDE graphs except the quark loop diagram.

The expression for the PT-BFM scalar cofactor∆Q(q
2) of the unquenched

propagator (the subindex Q standing for “quarks”), defined as ∆µν
Q (q) =

Pµν(q)∆Q(q
2) with Pµν = gµν − qµqν/q2 the dimensionless transverse pro-

jector, can be then written as [15]

∆Q

(
q2
)
=

∆
(
q2
)

1 +
{
i X̂ (q2) [1 +G (q2)]−2 − λ2

}
∆ (q2)

. (1)

In what follows, we will describe all the different terms appearing in the
right-hand side of the formula above.

• ∆(q2) is the quenched propagator which, as already pointed out, will
be identified with the one obtained from the large volume lattice sim-
ulations.
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• G(q2) is a special Green’s function particular to the PT-BFM which
achieves the conversion from the PT-BFM to the conventional gluon
propagator [8, 9]; in the Landau gauge it is known to coincide with
the Kugo–Ojima function [13, 17].

• X̂(q2) is the PT-BFM scalar cofactor resulting from the calculation of
the quark loop diagram; defining X̂µν(q) = Pµν(q)X̂(q2), one has

X̂
(
q2
)
= −g

2

12

∫
k

Tr
[
γµS(k)Γ̂µ(k + q,−k,−q)S(k + q)

]
, (2)

where S is the full fermion propagator (with S−1(p) = −iA(p)[p/ −
M(p)] andM the dynamical quark mass), and Γ̂ν is the full PT-BFM
quark-gluon vertex. To evaluate expression (2) one proceeds as follows:
(i) the nonperturbative behavior of the functions A andM appearing
in the definition of the full quark propagator is obtained by solving
numerically the quark gap equation as done in [14]; (ii) for the full
PT-BFM quark-gluon vertex Γ̂ one uses a suitable nonperturbative
Ansatz, satisfying the gauge symmetry of the theory — such as the
Ball–Chiu vertex [18] or the Curtis–Pennington vertex [19] — improved
with the inclusion of the (numerically crucial) dependence on the ghost
dressing function and the quark-ghost scattering amplitude [14]. To
be sure, other forms of the quark-gluon vertex exists, such as those
reported in [20, 21], and it would be interesting to check what effects
they might have on our predictions.

• Finally, λ2 = ∆−1
Q (0) − ∆−1(0) ≡ m2

Q(0) − m2(0) denotes the gluon
mass difference at q2 = 0 (notice that since X̂(0) = 0, the quark contri-
bution to this quantity is only indirect, i.e. through the modification it
will induce on the various ingredients appearing in the mass equation
— see the next section). A solid first-principle determination of λ2
has not been attempted, mainly due to the fact that the derivation of
the complete mass equation has been only very recently achieved [16]
(see the next section again); in the analysis presented here, we will
restrict ourselves to extracting an approximate range for λ2, by em-
ploying a suitable extrapolation of the (unquenched) curves obtained
from intermediate momenta towards the deep IR.

The main results of our study may be summarized as follows (see Fig. 1).
The basic effect of the quark loop(s) (one or two families with a constituent
mass of the order of 300 MeV) is to suppress considerably the gluon prop-
agator in the IR and intermediate momenta regions, while the ultraviolet
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Fig. 1. Top panels: Solution of the quark gap equation: A−1(k2) (left) and dy-
namical quark mass M(k2) (right) renormalized at µ = 4.3 GeV; dotted (black)
curves correspond to the improved Ball–Chiu vertex, while dashed (blue) curves
to the improved CP vertex. Bottom panels: Comparison between the quenched
and the unquenched gluon propagator (left) and dressing function (right). The
shaded striped region of the left plot shows the possible values that ∆Q(0) can
assume at zero momentum depending on the extrapolation point used; in the case
of the dressing function (which is basically insensible to the IR saturation point),
we used a curve with an extrapolation point at q2 = 0.05 GeV2. The quenched
lattice results of [22] are also displayed for comparison.

tails increase, exactly as expected from the standard renormalization group
analysis. In addition, the inclusion of light quarks makes the gluon propa-
gator saturate at a lower point, which can be translated into having a larger
gluon mass. As far as the gluon dressing function Z(q2) = q2∆(q2) is con-
cerned, one observes a suppression of the intermediate momentum region
peak. A comparison with the recent full QCD lattice simulations of [23] is
currently underway; however, a comparison with some of the available lat-
tice data [24] (Fig. 2) shows an excellent qualitative agreement as well as a
rather favorable quantitative agreement (with discrepancies at the 20% level
maximum).
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Fig. 2. The unquenched gluon propagator (left) and dressing function (right) ob-
tained in [24] (dark gray stars), together with the SDE results for two light quarks
with Mu/d = 15 MeV (dashed (blue) curve ) and Mu/d = 710 MeV (dotted (black)
curve). Quenched data [22] are again shown for comparison.

2. The complete gluon mass equation

Massive solutions of the gluon propagator SDE can be parametrized as
(Euclidean space) ∆−1(q2) = q2J(q2) + m2(q2); therefore, one faces the
fundamental question of how to disentangle from the SDE the part that
determines the evolution of the mass m2(q2) from the part that controls
the evolution of the “kinetic” term J(q2). This is to be contrasted to what
happens in the analogous studies of chiral symmetry breaking, where one de-
rives a system of two coupled equations, one determining the “wave function”
(“kinetic part”) of the quark self-energy, and one determining the dynamical
(constituent) quark mass [14, 25]. Of course, in the case of the quark self-
energy the above separation of both sides of the corresponding SDE (quark
gap equation) is realized in a direct way, due to the distinct Dirac prop-
erties of the two quantities appearing in it, while in the case of the gluon
propagator no such straightforward separation is possible. However, an un-
ambiguous way for implementing this separation, which exploited to the
fullest the characteristic structure of a certain type of vertices that are inex-
tricably connected with the process of gluon mass generation and naturally
appears in the PT-BFM framework, was recently presented in [16].

Specifically, a crucial condition for obtaining out of the SDEs an IR-finite
gluon propagator without interfering with the gauge invariance of the theory,
is the existence of a set of special vertices that are purely longitudinal and
contain massless poles, and must be added to the usual (fully-dressed) ver-
tices of the theory. The role of these vertices is two-fold. On the one hand,
thanks to the massless poles they contain, they make possible the emer-
gence of a IR finite solution out of the SDE governing the gluon propagator;
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this corresponds essentially to a non-Abelian realization of the well-known
Schwinger mechanism [26, 27]. On the other hand, these same poles act like
composite Nambu–Goldstone excitations, preserving the form of the STIs of
the theory in the presence of a gluon mass.

It turns out that the very nature of these vertices furnishes a solid guiding
principle for implementing the aforementioned separation between mass and
kinetic terms. In particular, their longitudinal structure, coupled to the fact
that one works in the Landau gauge, completely determines the longitudinal
component of the mass equation; this is tantamount to knowing the full mass
equation, given that the answer is bound to be transverse.

Due to the complexity of the derivation of the equation, we will not
discuss it here, but rather sketch its final form as well as its main ingredients,
together with the numerical solutions it gives rise to.

Schematically, the equation reads

m2
(
q2
)
= αs

∫
k

m2
(
k2
)
[K1(∆; q, k) + αsK2(∆,Y ; q, k)] , (3)

where K1 is the contribution coming form the one-loop dressed diagrams
(namely the graphs appearing in the PT-BFM gluon propagator SDE con-
taining trilinear vertices only), whereas K2 is the contribution of two-loop
dressed diagrams (that is, the graphs containing quadrilinear vertices). As
indicated in Eq. (3), while K1 contains only the gluon propagator, in K2 a
new form factor Y appears, which involves the three gluon vertex and reads

Y
(
k2
)
=

1

3k2
kαg

δ
β

∫
`

∆αρ(`)∆βσ(`+ k)Γσρδ(−`− k, `, k) . (4)

The lowest order perturbative calculation of Y (obtained by substituting
tree-level values for all quantities appearing in the expression above) yields
(after renormalization) Y ∼ log k2/µ2; this value multiplied by a constant C
(basically modelling, in a rather heuristic way, further corrections that may
be added to the “skeleton” provided by the lowest order result) is the one
used in [16] for studying numerically the solutions of Eq. (3). The value
of C corresponding to the lowest order expression is fixed to the actual
value C = 3πCAαs; however, it is convenient to treat C as a free parame-
ter, thus disentangling it from the value of αs, and studying what happens
to the solution spectrum of Eq. (3) when the two parameters are varied
independently.

As shown in the left panel of Fig. 3 (where C is now measured in units
of 3πCA), there is a continuous curve formed by the pairs (C,αs), for which
one finds physical solutions. Indeed, for small values of C one has that no
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solution exists; this absence of solutions persists (for the quenched case)
until the critical value C ≈ 0.56 is reached, after which one finds exactly
one monotonically decreasing solution. However, for values up to C ≈ 0.8
the coupling needed to get the corresponding running mass is of O(1), while
for the quenched case the expected coupling from the 4-loop (momentum
subtraction) calculation is αs = 0.22 at µ = 4.3 GeV [28]. This latter value
is obtained for C ≈ 1.8–1.9, whereas for C ≈ 0.88 one finds the solution
to Eq. (3) for the lowest order perturbative value of the coefficient. In
general, one observes, as expected, that as C is increased, αs decreases, e.g.
for C = 1.1, 1.3, 1.5 and 1.7 one obtains solutions corresponding to the
strong coupling values αs ≈ 0.53, 0.39, 0.30, and 0.25, respectively.
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Fig. 3. The curve described by the set of pairs (C,αs) for which one finds phys-
ical solutions to the full mass equation (3) (left), and the typical monotonically
decreasing solution of the mass equation (3) (right).

In the right panel of Fig. 3, we plot the solutions for the most represen-
tative C values, i.e. C = 0.88 and C = 1.85 (corresponding to, as already
said, αs ≈ 0.88 and 0.22 respectively), normalized in such a way that the
mass at zero coincides with the IR saturating value found in lattice (Lan-
dau gauge) quenched simulations [22], orm2(0) = ∆−1(0) ≈ 0.141 GeV2. As
can be readily appreciated, the masses obtained display the basic qualitative
features expected on general field-theoretic considerations and employed in
numerous phenomenological studies; in particular, they are monotonically
decreasing functions of the momentum, and vanish rather rapidly in the ul-
traviolet [1, 29, 30]. It would seem, therefore, that the PT-BFM all-order
analysis described here puts the entire concept of the gluon mass, and a
variety of fundamental properties ascribed to it, on a solid first-principle
basis.
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