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QUARK ORBITAL ANGULAR MOMENTUM∗
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For transversely polarized nucleons the distribution of quarks in the
transverse plane is transversely shifted and that shift can be described
in terms of Generalized Parton Distributions (GPDs). This observation
provides a ‘partonic’ derivation of the Ji-relation for the quark angular mo-
mentum in terms of GPDs. Wigner distributions are used to show that the
difference between the Jaffe–Manohar definition of quark orbital angular
momentum and that of Ji is equal to the change of orbital angular momen-
tum due to the final state interactions as the struck quark leaves the target
in a DIS experiment.
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1. Distribution of quarks in the transverse plane

Fourier transforms of Generalized Parton Distributions (GPDs) describe
the distribution of partons in the transverse plane [1]. In the case of trans-
versely polarized quarks and/or nucleons, these show a significant deviation
from axial symmetry. For example, in the case of unpolarized quarks in a
nucleon polarized in the +x̂ direction, this deformation is described by the
⊥ gradient of the Fourier transform of the GPD Eq [2]

qq/p↑ (x, b⊥) =

∫
d2x⊥
(2π)2

e−ib⊥·∆⊥Hq
(
x, 0,−∆2

⊥
)

− 1

2M
∂y

∫
d2x⊥
(2π)2

e−ib⊥·∆⊥Eq
(
x, 0,−∆2

⊥
)

(1)

for quarks of flavor q. Since Eq(x, 0, t) also arises in the decomposition of
the Pauli form factor F q2 =

∫ 1
−1 dxE

q(x, 0, t) for quarks with flavor q (here it
is always understood that charge factors have been taken out) w.r.t. x, this
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allows to relate the ⊥ flavor dipole moment to the contribution from quarks
with flavor q to the nucleon anomalous magnetic moment (here it is always
understood that charge factors have been taken out)

dq ≡
∫
d2b⊥q+x̂ (x, b⊥) by =

1

2M
F q2 (0) =

1

2M
κq/p . (2)

Here, eqκq/p is the contribution from flavor q to the anomalous magnetic
moment of the proton. Neglecting the contribution from heavier quarks
to the nucleon anomalous magnetic moment, one can use the proton and
neutron anomalous magnetic moment to solve for the contributions from
q = u, d, yielding κu/p ≈ 1.67 and κd/p ≈ −2.03. The resulting signifi-
cant deformation (|dq| ∼ 0.1 fm) of impact parameter dependent PDFs in
the transverse direction, which is in opposite directions for u and d quarks
(Fig. 1), should have observable consequences in other experiments as well
as will be discussed in the following.

bx

by

bx

by

uX(x,b⊥) dX(x,b⊥)

Fig. 1. Distribution of the j+ density for u and d quarks in the ⊥ plane (x = 0.3 is
fixed) for a proton that is polarized in the x direction in the model from Ref. [2].
For other values of x the distortion looks similar.

2. Angular momentum sum rule

The transverse deformation also provides a parton interpretation for the
‘Ji-relation’ [3] between the 2nd moment of GPDs and the angular momen-
tum carried by the quarks.

For a nucleon at rest, described using a spherically symmetric wave
packet centered at the origin ψ(~r) the impact parameter dependent quark
distribution is obtained as a convolution of the quark distribution relative
to the center of momentum with the distribution of the nucleon described
by the wave packet. Surprisingly, when the nucleon is transversely polar-
ized, the resulting center of momentum for the entire nucleon is not at the
origin but shifted sideways by half a Compton wavelength in a direction
perpendicular to the spin polarization [4]



Quark Orbital Angular Momentum 127

qψ (x, b⊥) =

∫
d2r⊥qq/P↑ (x, b⊥ − r⊥)

(
|ψ (r⊥) |2 − 1

2M

∂

∂r⊥
|ψ (r⊥) |2

)
.

(3)
This is a peculiar effect that arises due to the fact that the lower compo-
nent of the Dirac wave function describing the nucleon wave packet has an
orbital angular momentum that is positively correlated to the nucleon spin.
However, even though this is a relativistic effect, it does not disappear in
the limit of a large ‘radius’ R for the wavepacket, since in the evaluation of
the center of momentum r⊥ ∼ O(R).

In order to relate the above distribution of quarks in a wave packet to the
contribution from quarks of flavor q to the nucleon angular momentum, we
use that for a nucleon polarized in the +x̂ direction, rotational symmetry
allows to replace Jxq =

∫
d3r[yT 0z

q − zT 0y
q ] → 2

∫
d3r yT 0z

q , where Tµνq is
the part of the energy-momentum tensor that involves q. The latter can be
related to the light-cone momentum density T++ = T 00 + T 0z + T z0 + T zz

since only T 0z + T z0 gives a nonzero contribution to
∫
d3r yT 0z

q . One thus
finds the Ji-relation [3] for the expectation value of Jxq in terms of

〈ψ|Jxq |ψ〉 =

∫
d3r y〈ψ|T++(~r)|ψ〉 = M

∫
dx

∫
d2r⊥qψ(x, r⊥)

= 1
2

1∫
0

dxx [Hq(x, 0, 0) + Eq(x, 0, 0)] (4)

moments of GPDs. Here we used the fact that
∫
dzT++(~r) represents the

distribution of the light-cone momentum fraction x in the transverse plane
and the term involving the GPDHq arises from the ‘overall shift’ (3) whereas
the term involving Eq was caused by the ‘intrinsic shift’ (1).

In light-cone language, the angular momentum operator can be written
as a sum of a ‘good’ and a ‘bad’ component. Fortunately, due to rotational
invariance, the expectation value of the bad component equals that of the
good component and we can restrict the calculation to the good component,
which has a parton interpretation in terms of the transverse shift described
by Eqs. (1) and (3).

3. Spin decompositions

The above derivation utilized the manifestly gauge invariant local energy-
momentum tensor and thus the resulting quark orbital angular momentum
(OAM) is also local. It enters the Ji-decomposition of the nucleon spin (5)

1
2 =

∑
q

Jq + Jg =
∑
q

[
1
2∆q + Lq

]
+ Jg (5)
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in which two terms are experimentally accessible: ∆q (through polarized
DIS) and, through DVCS, the quark OAM

Lq =

∫
d3x 〈P, S| q†(~x)

(
~x× i ~D

)z
q(~x) |P, S〉 . (6)

An alternative decomposition has been suggested in Ref. [5]

1
2 =

∑
q

1
2∆q + Lq + ∆G+ Lg , (7)

where each term can be defined gauge invariantly, but except for ∆q, defini-
tions in terms of local operators only exist in light-cone gauge A+ = 0. For
example, in light-cone gauge the quark OAM is defined through

Lq =

∫
d3x 〈P, S| q̄(~x)γ+

(
~x× i~∂

)z
q(~x) |P, S〉 . (8)

The most significant difference to (6) is the replacement i ~D ≡ i~∂−g ~A −→ i~∂.
The quark spin contribution is the same as in (5), and ∆G is accessible
though longitudinally polarized proton–proton scattering as well as through
scaling violations in polarized DIS.

Model studies have shown that indeed Lq 6= Lq [6] and, therefore, it is
not clear whether one should ‘mix’ the two decompositions (5) and (7) in
order to accomplish a ‘complete’ decomposition of the nucleon spin.

4. Wigner distributions and quark OAM

Wigner distributions are defined through Fourier transforms of nonfor-
ward matrix elements of (nonlocal) quark correlation functions [7]

W
(
x,~b⊥,~k⊥

)
≡
∫

d2~q⊥
(2π)2

∫
d2ξ⊥dξ−

(2π)3
eik·ξei

~b⊥·~q⊥〈P ′S′|q̄(0)γ+q(ξ)|PS〉
(9)

and provide a quasi-probabilistic description both in ⊥ position b⊥ and mo-
mentum k⊥. Since we only consider Sz = S′z = +1

2 , the explicit dependence
of W (x,~b⊥,~k⊥) on S, S′ will be suppressed to simplify notation.

Wigner distributions allow a unified description of GPDs q(x, b⊥) =∫
d2k⊥W (x,~b⊥,~k⊥), TMDs f(x,k⊥) =

∫
d2b⊥W (x,~b⊥,~k⊥), and OAM [8]

Lz =

∫
dx

∫
d2b⊥

∫
d2k⊥W

(
x,~b⊥,~k⊥

)
(bxky − bykx) . (10)

Since Eq. (9) involves non-local quark correlation functions, Wilson line
gauge links connecting 0 with ξ must be inserted for a manifestly gauge
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invariant definition. This raises the immediate question regarding the choice
of path for the Wilson line gauge link. One choice that may appear natural is
a straight-line path from 0 to ξ. Such a choice leads to local definitions both
for TMDs as well as OAM: For the OAM (10) with such a choice of path
reduces to Ji’s OAM (6). However, such a choice also leads to TMDs that
have vanishing Single-Spin Asymmerties (SSAs) as a straight line gauge-link
does not account for the final-state interactions (FSI) experienced by the
struck quark in DIS. These FSI can be included into a definition of Wigner
functions by using a straight Wilson line gauge links from the position of the
quark field operators to x− =∞ (for fixed x⊥) and back with an additional
connection at from 0⊥ to x⊥ at x− =∞ (Fig. 2). In particular, in A+ = 0
gage it is essential to include the segment at x− =∞. Indeed, in that gauge
one finds for the average ⊥ momentum

ξ−

ξ⊥

q̄(0−,0⊥) (∞−,0⊥)

(∞−, ξ⊥)q(ξ−, ξ⊥)

Fig. 2. Staple shaped path for gauge-link in the LC definition of Wigner functions.

〈
~K⊥
〉
≡
∫
d2k⊥ ~k⊥

∫
d2b⊥W

q
LC

(
x,~b⊥,~k⊥

)
~k⊥ = 〈P, S| q̄(0)γ+i ~Dq(0) |P, S〉

(11)
with i ~D = i~∂ − g ~A(x− = ∞,x⊥), which is nonzero [9], but would vanish
without the contribution from ~A(x− = ∞,x⊥) [10]. In contradistinction,
for the definition of the quark OAM, even for A+ = 0 the piece at x− =∞
does not contribute [11]. This implies thatW q

LC provides a manifestly gauge
invariant definition for Lq [12] also as

Lq =

∫
dx

∫
d2b⊥

∫
d2k⊥W

q
LC

(
x,~b⊥,~k⊥

)
(bxky − bykx)

=

∫
d3b 〈P, S| q̄

(
~b
)
γ+
(
~b× i ~D

)
z
q
(
~b
)
|P, S〉 . (12)

For this work the most important advance from using Wigner distributions
to define quark OAM is that we are now in a position to compare the Jaffe–
Manohar definition with that of Ji. Upon subtracting (6) from (12) and
nothing that (in A+ = 0 gauge)

A⊥(x− =∞,x⊥)−A⊥(0,x⊥) =

∞∫
0

dx−G−⊥(x−,x⊥) , (13)
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where
√

2G+y = −Ey +Bx = −( ~E− ~̂z× ~B) is the ŷ component of the color
Lorentz force acting on a particle moving with the velocity of light in the
−ẑ direction. We thus find that the difference between the Jaffe–Manohar
definition of OAM and that of Ji can be expressed in terms of the change
in OAM as the quark leaves the target after being struck in DIS due to
the FSI [13]

Lq−Lq = ∆LFSI =

∫
d3x

∞∫
x−

dξ− 〈P, S| q̄(~x)γ+Tz(ξ
−,x⊥)q(~x) |P, S〉 , (14)

where Tz = g
[
~x×

(
~E − ~̂z × ~B

)]
z
is the torque acting on the struck quark

leaving the nucleon. This result also implies that the so-called ‘potential
angular momentum’ [14] that arises when one tries to merge (5) with (7),
may have a new interpretation in terms of the change in OAM of the quark
as it leaves the target.
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