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The new data on the γ∗γ → π0 transition form factor of the Belle
Collaboration are analyzed in comparison with those of BaBar (including
the older data of CELLO and CLEO) using an approach based on light-
cone sum rules. Performing a 2-, and a 3-parametric fit to these data, we
found that the Belle and the BaBar data have no overlap at the 1σ level.
While the Belle data agree with our predictions, the Babar data are in
conflict with them.
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1. Light-cone sum rules for the process γ∗(Q2)γ(q2 ' 0) → π0

The validity of the collinear factorization — the basis of applications of
QCD to hard processes — was challenged in the year 2009 by the exper-
imental data measured by the BaBar Collaboration [1] for the kinematics
Q2 > m2

ρ, q
2 � m2

ρ. In 2012, new experimental data by the Belle Collabo-
ration [2] were presented that do not indicate such a growth and are grossly
compatible with the QCD expectations. In this presentation, we show how
these data and the previous ones by the CELLO [3] and CLEO [4] collab-
orations can be analyzed within the theoretical scheme of light-cone sum
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rules (LCSR)s that incorporates contributions from QCD perturbation the-
ory and higher-twist corrections. Within QCD, the pion–photon transition
form factor (TFF) F γ∗γ∗π0 is given by the matrix element∫

d4z e−iq1·z
〈
π0(P )

∣∣T{jµ(z)jν(0)} | 0〉 = iεµναβq
α
1 q

β
2F

γ∗γ∗π0 (
Q2, q2

)
, (1)

where jµ denotes the quark electromagnetic current and Q2 ≡ −q21 > 0, q2 ≡
−q22 ≥ 0. For the asymmetric kinematics q2 < m2

ρ, one has to include into
the calculation the interaction of the (quasi) real photon at long distances
∼ O(1/

√
q2). To accomplish this goal, we apply the approach of LCSRs [5, 6]

that effectively accounts for the effects of the long-distance interactions of
the real photon by making use of a dispersion relation in q2 and applying
quark–hadron duality in the vector channel [7, 8]. Taking the limit q2 → 0,
we get [6]

Q2F γ
∗γπ0 (

Q2
)

=

√
2

3
fπ

Q2

m2
ρ

1∫
x0

exp

(
m2
ρ −Q2x̄/x

M2

)
ρ̄
(
Q2, x

) dx
x

+

x0∫
0

ρ̄
(
Q2, x

) dx
x̄

 , (2)

where M2 is the Borel parameter in the interval 0.7–0.9 GeV2 and the spec-
tral density is given by ρ̄(Q2, x) = (Q2 + s)ρpert(Q2, s) with

ρpert (Q2, s
)

=
1

π
ImF γ

∗γ∗π0 (
Q2,−s− iε

)
= ρtw-2 + ρtw-4 + ρtw-6 + . . . (3)

The various twist contributions are defined in the form of convolutions of
the corresponding hard parts with the pion distribution amplitude (DA) of
a given twist [6]. For instance, for the twist-four contribution we use the
effective description [6] ϕ(4)

π (x, µ2) ∼ δ2tw-4(µ2)x2(1 − x)2 with δ2tw-4(µ2) =
0.19±0.04 GeV2 [7]. Here, we used the abbreviations x̄ = 1−x, s = x̄Q2/x,
x0 = Q2/(Q2 + s0), where s0 ' 1.5 GeV2 is the effective threshold in the
vector channel. The leading twist-two contribution has the perturbative
expansion (as = αs/(4π))

F tw-2
γ∗γ∗π0 ∼

(
TLO + as

(
µ2
)
TNLO + a2s

(
µ2
)
TNNLOβ0

+ . . .
)
⊗ ϕπ

(
x, µ2

)
. (4)

The corresponding contributions from (4) to the spectral density (3)
have been obtained in [9]. For the term ρNLO, we employ the corrected
version computed in [10]. The “bunch” of the admissible twist-two pion
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DAs ϕπ(x, µ2) was determined in [11] within the framework of QCD SRs
with nonlocal condensates (NLC)s. This DA “bunch” (shown graphically in
Fig. 1 in the form of a rectangle) can be effectively parameterized in terms
of the first two Gegenbauer coefficients a2 and a4 to reduce the expansion to
ϕBMS
π (x) = 6xx̄

[
1 + a2C

3/2
2 (2x− 1) + a4C

3/2
4 (2x− 1)

]
. Our next goal is to

extract a pion DA that provides best agreement with all sets of the existing
data by performing a fit procedure of the Gegenbauer coefficients an within
the basis of LCSRs, cf. Eq. (2). The results for the combined set of data
from CELLO&CLEO&Belle — termed CCBe — will be contrasted to those
from the CELLO&CLEO&BaBar set — called CCBB.

2. 2D-analysis of the combined data fit

In Fig. 1, we present the confidence region of the a2, a4 values in the
form of error ellipses in the (a2, a4) plane, obtained by fitting different sets
of data. We take into account only statistical errors and exclude theoretical
uncertainties — in contrast to our previous work in [7, 8]. Using LCSRs with
the pion DAs obtained in QCD SR NLC [11], one arrives at the predictions
shown in terms of the (shaded/green) rectangle in comparison with the error
ellipses pertaining to the different sets of data defined in the previous section.
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Fig. 1. Error ellipses of various sets of data described in Sec. 1 and taken at
µ = 2.4 GeV scale. The best-fit values of χ2 are shown at the centers of the
ellipses, while differences between data sets are displayed along the links in units
of 1σ. The vertical lines show the range of values computed on the lattice: dashed
line [12]; dash-dotted line [13].

The best-fit values of the χ2 goodness criterion χ2
ndf ≡ χ2/ndf (ndf =

number of degrees of freedom) are shown as centers of the ellipses, with the
deviations from one data set to another with reference to the rectangle being
displayed along the links and expressed in units of one standard deviation
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(1σ ≈ 68%). We conclude that the inclusion of the BaBar data to those
obtained before by CELLO&CLEO leads to an approximately 3σ shift [14]
of the confidence region away from the (black) ellipse at the bottom. The
result is represented by the (dotted/red) ellipse at the top accompanied by
a significant increase of χ2

ndf from 0.4 to 2 (for the CCBB data set). If we
include to the CELLO&CLEO data only the Belle data set CCBe, then the
shift of the confidence region is only moderate giving rise to a slight increase
of χ2

ndf from 0.4 to 0.6 (ellipse in the middle)1. We quantify the deviations
of these data sets from our theoretical estimates, encoded in the rectangle,
in terms of σ values shown along the links which connect the central data
values with the BMS model (6) inside the rectangle. Here and in the next
figure, the vertical broken lines denote the constraints from two different
lattice simulations: dashed lines [12]; dash-dotted lines [13].
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Fig. 2. Predictions for the moments 〈ξ2〉 and 〈ξ4〉π at the lattice scale µ2
Lat =

4 GeV2. The lower stretched ellipse — solid (black/blue) line — corresponds to a
2D fit to the CCBe data, while the upper one (gray/red line) represents the CCBB
one. In contrast to Fig. 1, we also include here the uncertainty related to the twist-
four coefficient δ2tw-4. The vertical lines show the range of values computed in two
lattice calculations using the same designations as in Fig. 1.

An immediate conclusion from these considerations is that (i) the BMS
DA is inside the 1σ CCBe and inside the 0.6σ region of the CELLO&CLEO
set, whereas the BMS “bunch” greatly overlaps with both of these error
ellipses. At the same time, the central point of CCBB is 6.2σ away and
has no overlap with the CCBe ellipse. (ii) The asymptotic DA (u) and the
Chernyak–Zhitnitsky (CZ) DA (n) are both more than 6σ away from CCBe.
(iii) The existing lattice calculations of a2, shown as vertical lines in Figs. 1

1 Note that we consider the χ2 goodness criterion for the considered experiments as
being the sum of the individual χ2 values associated with each experiment.
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and 2, are not restrictive enough to narrow down the interval of a2, though
the narrower band [13] supports both the CCBe data and our theoretical
results but not the CCBB data. On the other hand, the previous lattice
simulation [12] is compatible with all sets of data and with our theoretical
predictions as well.

With all these data in our hands, we may attempt to extract values
of the moment 〈ξ4〉π by combining the real data from CCBe and CCBB
with the results of lattice simulations. The combined constraints from
CCBe (lower (black/blue) error ellipse in Fig. 2) and the lattice constraints
from [13] (dash-dotted vertical lines) lead to the following predictions for
〈ξ4〉π: 〈ξ2〉π ∈ [0.26 ÷ 0.30] and 〈ξ4〉π ∈ [0.112 ÷ 0.13]. In contrast, the
constraints extracted from the CCBB data (upper (gray/red) ellipse) do not
allow a reliable determination of the 〈ξ4〉π range in the background of the
lattice results from [13]. On the other hand, the constraints from [12] are
not stringent enough to differentiate these sets of data.

3. 3D-analysis of the combined data

We step up from a 2D to a 3D analysis of the data, by including the
next coefficient a6. Then, we get in Fig. 3 fit results in terms of 1σ ellipsoids
with respect to the experimental statistical errors for the CCBe data set
(left panel) and the CCBB (right panel). The theoretical ∓∆δ2tw-4-error is
indicated by a solid (red) cross for an increasing value of δ2tw-4, whereas a
dashed (green) cross (closer to the a6 axis) denotes a decreasing value. The
projection of the CCBe 1σ ellipsoid on the plane (a2, a4) is represented, in
both panels, by the larger (red) ellipse, while the smaller one refers to CCBB.
The shaded (green) rectangle encloses the region of a2, a4 pairs allowed by
NLC SRs [11], with the symbol (6) marking the BMS pion DA. All results
are shown at the scale µ = 2.4 GeV after NLO evolution.

To further quantify these statements, we supply the “coordinates” of
the central point of each of the two displayed ellipsoids in the following
form. The first number gives the central value of the fit, the next number
is the statistical 1σ error, and the third one is the theoretical uncertainty
due to twist-four. Then, we have: CCBe (0.157 ± 0.057 ± 0.056,−0.192 ±
0.122± 0.077, 0.226± 0.161± 0.033) with χ2

ndf = 13.1/30; CCBB (0.177±
0.054 ± 0.056,−0.171 ± 0.103 ± 0.071, 0.307 ± 0.096 ± 0.024) with χ2

ndf =
33.3/32. To conclude: (i) The description of the CCBe data provides a
better χ2

ndf ≈ 0.4 relative to χ2
ndf ≥ 1 following from CCBB. (ii) The CCBe

and CCBB ellipsoids are significantly separated from each other, so that a
QCD description of these sets of data requires substantially different DAs.
(iii) The (a2, a4) projections of both ellipsoids have a good overlap with the
BMS “bunch”, though the CCBe ellipsoid has no intersection with it. An
intersection is possible but only at a larger value of the confidence level.
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Fig. 3. 3D graphics of the 1σ error ellipsoids in the space spanned by the Gegen-
bauer coefficients an (n = 2, 4, 6) for processing the data on the pion–photon tran-
sition form factor within the LCSR approach using the scale µ = 2.4 GeV. Left:
Only CCBe data used. Right: CCBB fit (smaller ellipsoid) shown in comparison
with CCBe data. More explanations are given in the text.

4. Local characteristics of the pion DA

The confidence region of the coefficients {an}, obtained in Sec. 3, can be
linked to other characteristics of the pion DA. The profiles of the pion DA
ϕπ(x), extracted in the 3D fit procedure, are shown in Fig. 4, left panel —
set CCBe; right panel — set CCBB. The BMS “bunch” (shaded green strip)
and the BMS DA model (black solid line inside it) are also shown. The main
difference between the two graphics in Fig. 4 stems from their distinct be-
havior near the endpoints that are concentrated inside the interval ∆ = 0.05.
Indeed, one observes that the DA (including uncertainties) — shaded area
in the right panel — providing best-fit to the CCBB data deviates signifi-
cantly from the BMS “bunch”. A mathematical tool to quantify the endpoint
characteristics of the pion DA is D(m)ϕ(∆), i.e., the average derivative of
ϕ(x) in the interval ∆, that was invented in [15] and possesses the follow-
ing properties: lim

∆→0
D(m)ϕπ(∆) = ϕ′π(0); lim

m→∞
D(m)ϕπ(∆) = ϕ′π(0), while

D(2)ϕ(1) =
∫ 1
0 dxϕπ(x)/x. The quantity D(2)ϕ(∆) can be used [16] to probe

the endpoint behavior of these different sorts of DAs,

D(2)ϕ(0.05) = 17.2± 8.5 for CCBe; 25.6± 5.25 for CCBB . (5)
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Fig. 4. Left: Comparison of the BMS pion DA “bunch” (darker shaded strip in
green) and of the BMS model (black solid line inside this strip) with the 3D fit to
the experimental data on the pion–photon transition form factor. The solid (blue)
line denotes the best-fit pion DA (at the scale µ = 2.4 GeV, see second paper
in [6]) obtained from the analysis of the set CCBe, with the dashed lines indicating
the sum of the statistical errors of the fit and the twist-four uncertainties. Right:
Analogous results obtained with the set CCBB.

We see that the slope in the endpoint region of the best-fit DA to CCBB
is much stronger than for CCBe. While the CCBe-based DA profile agrees
with the BMS “bunch”, it is incompatible with the CCBB shape.

5. Conclusions

We presented here an analysis of all experimental data on the pion–
photon transition form factor and compared in detail the results obtained
with two different sets of data: CELLO, CLEO, BaBar — (CCBB) versus
CELLO, CLEO, and Belle — (CCBe). Our analysis is based on LCSRs at
NLO, also taking into account the twist-four term. The NNLOβ radiative
correction was included into the theoretical uncertainties together with the
twist-six contribution [10]. The key results can be summarized as follows:
(i) We performed a 2D (parameters a2, a4) and a 3D (parameters a2, a4, a6)
analysis, fitting both the CCBe and the CCBB data sets. We found that in
both cases the fit to CCBe provides a significantly better χ2

ndf value. (ii) The
CCBe 2D fit agrees well within error bars with the previous findings from the
CELLO and CLEO fits and the predictions derived from QCD SR NLC [11]
with the BMS “bunch” and the BMS model DA. The fits are also compatible
with the constraints on a2 extracted from lattice computations. In contrast,
the CCBB 2D fit has no overlap with the CCBe result and it also does not
comply with the QCD SR NLC predictions. (iii) The results of the 3D fit to
the CCBe and CCBB data sets do not intersect at the level of a 1σ accuracy.
At the same time the CCBe result is much closer to the BMS “bunch”, but
still outside the 1σ area. (iv) The qualitative features of the 3D fit to the
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CCBe and CCBB data can be differentiated in terms of the behavior of the
corresponding profiles of the pion DAs near the endpoints: the CCBe has a
less pronounced slope and is close to the BMS “bunch”, whereas the slope of
CCBB is larger and gives no support to the BMS DAs.
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