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Axial anomaly leads to exact sum rules for transition form factors
providing the important constraints to respective distribution amplitudes.
This rigorous NPQCD approach is valid even if QCD factorization is bro-
ken. The status of possible small non-OPE corrections to continuum in
comparison to BaBar and Belle data is discussed.
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1. Anomaly sum rule and transition form factors

The phenomenon of axial anomaly [1] is widely known for its manifesta-
tion in two-photon decays of pseudoscalar mesons. The dispersive approach
to axial anomaly [2] turns out to be a useful tool for exploration of the pro-
cesses, which involve virtual photons also, like the photon–meson transitions
γγ∗ → π0(η, η′) [3–7].

The axial anomaly is associated with the VVA triangle graph amplitude,
which involves two vector currents with momenta k, q and one axial current
with momentum p = k + q

Tαµν(k, q) =

∫
d4xd4ye(ikx+iqy)〈0|T{Jα5(0)Jµ(x)Jν(y)}|0〉 . (1)

This amplitude can be decomposed into the six tensor structures,

Tαµν(k, q) = F1εαµνρk
ρ + F2εαµνρq

ρ + F3kνεαµρσk
ρqσ

+F4qνεαµρσk
ρqσ + F5kµεανρσk

ρqσ + F6qµεανρσk
ρqσ , (2)
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where Fj = Fj(p
2, k2, q2;m2), j = 1, . . . , 6 are the scalar factors, constrained

by current conservation and Bose symmetry. In what follows, we consider
the case with one virtual photon (−q2 = Q2 > 0) and one real photon
(k2 = 0).

The axial anomaly, considered in the dispersive approach, leads to an
anomaly sum rule (ASR) [2]

∞∫
4m2

A
(a)
3

(
s,Q2;m2

)
ds =

1

2π
NcC

(a) , a = 3, 8 , (3)

where A3 = 1
2 Imp2(F3−F6), Nc = 3 is a number of colors, m is a quark mass

and C(a) are the charge factors of components of the axial currents J (a)
α5 . For

the isovector (a = 3) and octet (a = 8) components of axial current

J
(3)
µ5 =

1√
2

(
ūγµγ5u− d̄γµγ5d

)
, C(3) =

1

3
√

2
,

J
(8)
µ5 =

1√
6

(ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s) , C(8) =
1

3
√

6
, (4)

the ASR (3) has an important property — both perturbative and nonpertur-
bative corrections to the integral are absent because of the Adler–Bardeen
theorem and the ’t Hooft’s principle.

In the case of isovector channel, saturating the l.h.s. of the three-point
correlation function (1) with the resonances, singling out the first contribu-
tion, given by the pion, and collecting all the other states into the continuum
contribution I(3)cont(Q

2, s3), we get the ASR in a form (in what follows we take
m = 0)

πfπFπγ
(
Q2
)
+I

(3)
cont

(
s3, Q

2
)

=
1

2π
NcC

(3) , I
(3)
cont ≡

∞∫
s3

A
(3)
3

(
s,Q2;m2

)
ds ,

(5)
where s3 is a continuum threshold, and the general definitions of the de-
cay constants faM (f (3)π ≡ fπ = 130.7MeV) and the transition form factors
(TFFs) of the reactions γγ∗ →M are

〈0|J (a)
α5 (0)|M(p)〉 = ipαf

a
M ,∫

d4xeikx〈M(p)|T{Jµ(x)Jν(0)}|0〉 = εµνρσk
ρqσFMγ . (6)
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If we employ the one-loop expression for the spectral density [2]

A
(3)
3

(
s,Q2

)
=
NcC

(3)

2π

Q2

(Q2 + s)2
, (7)

from Eq. (5), we get [3]

Fπγ
(
Q2
)

=
1

2
√

2π2fπ

s3
s3 +Q2

. (8)

In the QCD factorization approach, the expression of the TFF is given
in terms of the convolution of a hard scattering kernel and a soft pion dis-
tribution amplitude (DA) φ(x) (see e.g. [8] and references therein). In
particular, at Q2 → ∞, where the pion DA evolves to its asymptotic form
φ(x)as = 6x(1 − x) and the pion TFF acquires its asymptotic value [9]
Q2F as

πγ(Q2) =
√

2fπ, the continuum threshold s3 can be determined from (8),
s3 = 4π2f2π = 0.67GeV2 and then (8) reproduces the well-known Brodsky–
Lepage interpolation formula [10].

When compared to the experimental data on pion TFF, equation (8)
gives a fairly good description of the data of CELLO [11], CLEO [12] and
Belle [13] collaborations, while the data of BaBar Collaboration [14] is de-
scribed much worse1 (see the dashed line in Fig. 1). The BaBar data indi-
cates a log-like growth, and in order to describe it well, one needs to consider
the possibility of the correction. As we mentioned above, the integral in ASR
does not have any corrections, but the spectral density A(3)

3 (s,Q2) can ac-
quire corrections, and therefore the continuum and the pion contributions
can have the corrections as well. The exactness of ASR results in an in-
teresting interplay between corrections to the continuum and pion: they
should cancel each other to preserve the ASR, δI(3)cont = −δIπ. The form of
the correction is not yet known (the origins of such a correction should be
essentially nonperturbative, see discussion in [7]). Nevertheless, we can pro-
pose the form of the correction, relying on the general properties of ASR: it
should vanish at s3 →∞ (the continuum contribution vanishes), at s3 → 0
(the full integral has no corrections), at Q2 → ∞ (the perturbative theory
works at large Q2) and at Q2 → 0 (anomaly perfectly describes pion decay
width). Supposing the correction contains rational functions and logarithms

1 The similar result is obtained also in the LCSR approach [8], where it was shown
that the BaBar data cannot be satisfactory described with only two Gegenbauer
coefficients.
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of Q2, the simplest form of the correction satisfying those limits results in [7]

Fπγ
(
Q2
)

=
1

πfπ
(Iπ + δIπ) =

1

2
√

2π2fπ

s3
s3 +Q2

[
1+

λQ2

s3+Q2

(
ln
Q2

s3
+ σ

)]
,

(9)
where λ and σ are dimensionless parameters. This kind of correction cannot
appear in (a local) OPE and should be possibly attributed to instantons or
short strings. Note also, that this correction implies that the pion distribu-
tion amplitude φ(x) does not vanish at x = 0, 1 and violates the factorization
(see also [15, 16]).

The fit of TFF (9) to the combined CELLO+CLEO+BaBar data gives
λ = 0.14, σ = −2.36, χ2/d.o.f. = 0.94, d.o.f. = 35. The plot of Q2Fπγ for
these parameters is shown in Fig. 1 as a solid line. The TFF (9) with these
parameters λ, σ describes well also the combined CELLO+CLEO+Belle
data with χ2/d.o.f. = 0.84, (d.o.f. = 35). On the other hand, the TFF
without correction (8) (dashed line in Fig. 1)) gives χ2/d.o.f. = 2.29 and
χ2/d.o.f.=1.01 for CELLO+CLEO+BaBar and CELLO+CLEO+Belle data
sets respectively. We can conclude that, although the BaBar data favors the
log-like correction, the newly released Belle data neither confirms, nor ex-
cludes the possibility of this correction.
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Fig. 1. Pion transition form factor: Eqs. (8) (dashed line) and (9) (solid line)
compared with experimental data.

It is interesting to consider in the same way the ASR in the octet channel.
Here we should take into account the first two contributions, which are given
by η and η′ mesons. Then the ASR in the octet channel [4] is (cf. also [17])

f8ηFηγ
(
Q2
)

+ f8η′Fη′γ
(
Q2
)

=
1

2
√

6π2
s8

s8 +Q2
, (10)
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where s8 is a continuum threshold, which can be determined from the large-
Q2 limit of (10) and the pQCD predicted expression for the η, η′ TFFs

s8 = 4π2
((
f8η
)2

+
(
f8η′
)2

+ 2
√

2
[
f8η f

0
η + f8η′f

0
η′
])

. (11)

Naturally, if the log-like correction is present in the isovector channel, it
should reveal itself in the octet channel too. The similar correction in the
octet channel leads to the ASR with the correction term [5, 7]

f8ηFηγ
(
Q2
)

+ f8η′Fη′γ
(
Q2
)

=
1

2
√

6π2
s8

s8 +Q2

[
1+

λQ2

s8 +Q2

(
ln
Q2

s8
+σ

)]
.

(12)

Eqs. (10), (11) and (12) contain the decay constants faM , which are usu-
ally analyzed basing on different mixing schemes or in a scheme-independent
way (see e.g. [7, 18] and references therein). For the purposes of numerical
analysis, we employ the decay constants, obtained in a scheme-independent
way in [7]: f8η = 1.11fπ, f8η′ = −0.42fπ, f0η = 0.16fπ, f8η′ = 1.04fπ. Then,
the fit of the Eq. (12) to the experimental data of BaBar Collaboration [19]
gives λ = 0.05, σ = −2.58 with χ2/d.o.f. = 0.81 (see the solid line in Fig. 2),
while Eq. (10) gives χ2/d.o.f. = 0.85 (dashed line). At the same time, if the
parameters are taken the same as for the pion case λ = 0.14, σ = −2.36, we
get χ2/d.o.f. = 1.02 (dot-dashed line). We see that the current precision of
the experimental data on η, η′ TFFs can accommodate the log-like correction
in the octet channel, although does not require it.
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Fig. 2. The ASR in the octet channel for different values of fitting parameters
compared with the experimental data, see description in the text.
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2. Conclusions

The current experimental data for the pion transition form factor in the
range of Q2 = 10–35GeV2 available from BaBar and Belle collaborations
manifest different tendencies.

The BaBar data show an excess over the asymptotic value of the tran-
sition form factor, requiring a log-like correction, and, therefore, violating
the QCD factorization and favoring the flat-like (not vanishing at the edges)
pion distribution amplitude. The more recent Belle data does not manifest
that striking behavior and gives more or less consistent with the Brodsky–
Lepage interpolation formula. The analysis for the octet channel of ASR
based on BaBar data shows the possibility to accommodate such correction,
but does not require it.
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