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We study the pion–photon transition distribution amplitudes (TDAs)
within semibosonized Nambu–Jona-Lasinio model with momentum depen-
dent constituent quark mass. In order to satisfy the Ward–Takahashi iden-
tities, we use the non-local currents. We analyse the axial and vector chan-
nels and find that our TDAs satisfy polynomiality and the normalization
requirement due to the axial anomaly. We calculate the related form factors
(for π± → e±νγ decay) and find that the value of the axial form factor at
zero momentum transfer is shifted towards the experimental value due to
the non-locality of the model. We also analyse the pion–photon transition
form factor for π0 → γ∗γ and compare it with data.
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1. Introduction

One of the most important tools in high energy physics are factoriza-
tion theorems, i.e. a systematic way of separating perturbatively calculable
part from well-defined non-perturbative matrix elements. The most tested is
the collinear factorization, where the corresponding non-perturbative matrix
elements sandwich non-local quark and gluon operators on the light-cone.
Besides the most common application in inclusive and semi-inclusive pro-
cesses, there are certain theorems allowing for collinear factorization also in
exclusive processes [1]. The most prominent is perhaps deeply virtual Comp-
ton scattering (DVCS) with corresponding non-perturbative part encoded in
so-called generalized parton distributions (GPDs) (for a review see e.g. [2]).
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In a DVCS process γ∗H → Hγ (Fig. 1), the highly virtual photon scat-
ters off the hadron H and the final state hadron flies approximately in the
forward direction in the CM frame of the incoming particles. Thus, the
momentum transfer to the hadronic matrix element is small, what actually
allows for the factorization to occur. There are certain generalizations, e.g.
to hard pseudoscalar meson electroproduction [3], which uses GPDs and dis-
tribution amplitudes (DAs) as non-perturbative objects. One can, however,
still generalize the collinear factorization by introducing so-called transition
distribution amplitudes (TDAs): whereas GPDs are defined via matrix el-
ements non-diagonal in hadron momenta, TDAs are also non-diagonal in
hadronic states. Thus, one can basically consider baryon–meson [4] and
hadron–photon [5] TDAs. In the right part of Fig. 1, we show an example
of a process with baryon–photon TDA. Note, that it is the same process
as in the left figure, however in a different kinematic regime — in so-called
‘backward kinematics’, i.e. when the final state photon flies approximately
in the same direction as the initial state hadron.
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Fig. 1. Factorization of the process γ∗H → Hγ in two different kinematic regimes:
left corresponds to the ‘forward kinematics’, while the right to the ‘backward kine-
matics’. The dark grey (blue) blobs denote pertubatively calculable parts.

So far, little is known experimentally about GPDs, notably TDAs (see
Ref. [6] for a review). The situation is somewhat better on the theory side,
especially if processes with simple hadronic states are considered. In partic-
ular, probably the most graceful states are pions being the Goldstone bosons
of spontaneously broken chiral symmetry and in the same time quark–anti-
quark bound states. Their low energy behaviour can be described by various
effective models, one of which shall be discussed in Sec. 2. Next, in Sec. 3,
we will define pion–photon TDAs and give our main results.

2. Non-local chiral quark model from instanton vacuum

At low energy scales (of the order of a few hundred MeV) the relevant
degrees of freedom are pions and constituent quarks. The characteristic
feature of the last is that they posses relatively large ‘constituent’ massM0 ≈
350 MeV. This mass is generated dynamically due to the spontaneous chiral
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symmetry breaking and is, in general, not a constant, i.e. for a momentum of
a quark k, we have M (k) = M0 F

2 (k), with F (0) = 1 and F (k →∞) = 0.
The function F (k) was derived within instanton theory of QCD vacuum [7]
and turned out to have highly non-trivial form given in Euclidean space.
The interaction part of the effective action for quarks and pions reads

Sint = M0

∫
d4k d4l

(2π)8
ψ̄(k)F (k)Uγ5(k − l)F (l)ψ(l) , (1)

with chiral field Uγ5(x) = exp( i
Fπ
τa · πa(x)γ5), where πa is the triplet of

pion fields, τa are Pauli matrices and Fπ ≈ 93 MeV is pion decay constant.
Here, we consider the chiral limit, i.e. the current quark mass is set to zero.

Instead of using the original complicated formula for F (k), we use the
following simple ansatz [8],

F (k) =

(
−Λ2

n

k2 − Λ2
n + iε

)n
(2)

which can be used in Euclidean as well as in the Minkowski space, provided
a special prescription for dealing with multiple poles is used. Our formula
possesses an important feature, namely it depends not only on the ‘cut-off’
parameter Λn, but also on the exponent n which dictates the shape of the
regulator (thus, the influence of a fall-off behaviour can be studied). The pa-
rameter Λn is adjusted for given n in such a way that the experimental value
of the pion decay constant is recovered. Using the Birse–Bowler formula [9],
we obtain in our model [10]

F 2
π = −NcM

2
0

4π2

4n+1∑
i,j=1

fifjη
2n
i

(
(1 + 2n (1 + 2n)) η2n+1

j + (1+4n (1+3n)) η2nj

+2n (1 + 6n) η2n−1j + 4n2η2n−2j

)( εij
ηi − ηj

ln
1 + ηi
1 + ηj

+
δij

1 + ηi

)
(3)

with εij being Levi–Civita symbol and δij being Kronecker delta. The com-
plex numbers ηi are the roots of G(z) = z4n+1 + z4n − (M0/Λn)2. Fixing
Fπ = 93 MeV, we get e.g. for n = 1 the value Λ1 = 836 MeV.

Although the momentum dependent quark mass seems to be very physi-
cal regulator, it generates a problem. Namely, the standard vector and axial
currents are not conserved. This generates a set of problems, including the
normalization of certain distributions. In order to avoid them, the currents
have to be modified, i.e. new additional non-local pieces have to be added.
In our work, we have used the modification proposed in Ref. [11].
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The model just presented has been used to calculate pion DA [8], photon
DAs [10, 12] up to twist-4, chiral condensates [13], pion generalized DAs [14]
and pion–photon TDAs [15, 16]. All the DAs were calculated analytically
up to the solution of the equation G(z) = 0.

3. Results

There are two TDAs of interest: the vector one (VTDA) which we de-
note V and the axial TDA (ATDA), A. They are defined as [5]∫

dλ

2π
e2iλXP

+ 〈
γ(p′, ε)

∣∣ d(−λn)γµu(λn)
∣∣π+(p)

〉
=

−e
4
√

2FπP+
εµναβε∗νpαp

′
β V (X, ξ, t) , (4)∫

dλ

2π
e2iλXP

+ 〈
γ(p′, ε)

∣∣ d(−λn)γµγ5u(λn)
∣∣π+(p)

〉
=

ie

4
√

2FπP+
p′µp · ε∗A (X, ξ, t) + . . . , (5)

where u, d are up, down quark fields, e is the electric charge, ε is the photon
polarization vector. The light-like vector n = (1, 0, 0,−1) defines a ‘plus’
component of any vector v, i.e. v+ = v · n. Moreover, we have defined
P+ = (p+ + p′+) /2, the momentum transfer t = (p′ − p)2 and so-called
skewedness ξ = (p′+ − p+) /2P+. The dots on the r.h.s. in the definition of
ATDA denote the structure proportional to pion DA.

Using the model described in the previous section, we have evaluated the
above matrix elements to one loop accuracy. In order to recover the correct
normalization for VTDA required by the axial anomaly,

∫ 1
−1 dX V (X, ξ, 0) =

1/2π2, we had to use the non-local currents not only for quark-photon vertex,
but also for the bilocal vertices. In the same time, the normalization ofATDA
is substantially decreased (Fig. 2). It has observable consequences: VTDA
and ATDA are related via sum rules to the form factors FV, FA for the
process π± → e±νγ (Table I). At zero momentum transfers the experimental
values are [17] F exp

V (0) = 0.0254± 0.0017, F exp
A (0) = 0.0119± 0.0001. Thus

the ratio is approximately one-half. In the local models (i.e. where the quark
mass does not depend on the momentum), this ratio is always one [18, 19].
Thus the conclusion is that the non-local interactions are important at low
energies, if the physical results are to be recovered (see also [20]).

There is also another interesting measurable quantity, namely pion–
photon transition form factor Fπγ , directly related to FV. We plot the
results in Fig. 3 together with the data [21–24]. Recently, there have been
debates concerning its high-Q2 behaviour, see e.g. [25, 26]. Here we, how-
ever, concentrate mainly on low-Q2 regime, where our model should apply.
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Fig. 2. Some of the model results (black solid) for VTDA (left) and ATDA (right)
for t = −0.1 GeV2 and ξ = 0.5. For VTDA the correct normalization (equal to
the one of the local quark model (dash-dotted/green) is recovered thanks to the
non-local part of the vertices (dotted/red). For ATDA this contribution is negative
and substantially decreases the normalization.

TABLE I

The results for axial form factor at zero momentum transfer.

M0 [MeV] n FA (0) FA (0) /FV (0)

225 1 0.0217 0.80
350 1 0.0168 0.62
350 5 0.0163 0.60
400 1 0.0161 0.60
400 5 0.0152 0.56

Local models 0.0272 1.00

It is, of course, interesting to look also at the results for large Q2 (right
of Fig. 3). We observe that in that regime our curves saturate at a value
dependent on the model parameters, thus the model is consistent with Belle
data, rather than BaBar.
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Fig. 3. The pion–photon transitions form factor. Left: low-Q2 regime for M0 =

300 MeV and n = 1 (solid). Right: behaviour for high-Q2 (shaded/yellow). The
dashed line is the asymptotic QCD prediction.
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