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Angular asymmetries are simple, intuitive, model-independent observ-
ables used to identify spins of new elementary particles. In the case of
Drell–Yan-like boson resonances, we generalize the well-known center-edge
angular asymmetry to optimize spin identification when only a limited sam-
ple of events is available. By choosing simple weight functions W (θ) in
integrals over the polar angle θ, such as W = cosn θ, we can improve spin
discrimination significantly in production and decays of spin-0, spin-1, and
spin-2 bosons. The power n can be tuned in particular cases, but n = 2
(n = 1) works well for any forward–backward symmetric (non-symmetric)
decay to massless particles.
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New particles, such as Higgs, Z ′, excited gravitons, sparticles, etc., may
well be discovered in collider data from pp̄ (Tevatron), pp (LHC), or e+e−

(ILC) scattering. The spin of a new virtual particle is often determined in
the experiment from the analysis of angular distributions in the heavy parti-
cle’s decay. This analysis follows a standard quantum-mechanical expansion
over spherical harmonics that depends on the spin of the massive particle
state. In this contribution, we describe an analysis procedure for decay
angular distributions that is more efficient in using limited event statistics
than the commonly adopted method. One way to determine the spin is to
exploit the “center-edge” asymmetry that typically exists between forward
and transverse decay products from a boson [1, 2]. We show how to modify
the usual “central-edge” asymmetry definition to increase its discriminating
power for the spin. We keep the discussion transparent by working at the
parton level, but consider a simple analytic model for typical experimental
acceptance. We checked that our main conclusions remain valid in a more
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realistic calculation, by comparing our method to a fully differential calcu-
lation using ResBos [3] that includes proton PDFs, NLO corrections, and
NNLL resummations in QCD.

For decay of a boson into two back-to-back massless particles, we define
a general asymmetry by an integral

A =

1∫
−1

W (z)P (z) dz . (1)

Here z = cos θ, θ is the decay polar angle in the boson center-of-mass frame,
P (z) = 1

σ
dσ
dz is the normalized production probability density, and W (z) is

a weight function. One popular choice for W (z) has been the center-edge
step function [1, 2, 4–8]

WCE(z) = +1 (|z| > z∗); −1 (|z| < z∗) , (2)

with z∗ ∼ 0.5. We will propose an alternative definition for W (z) that is
more optimal than WCE(z).

To discriminate between two possible boson spins a and b in a mea-
surement, we introduce respective probability densities Pa(z) and Pb(z) and
their asymmetries Aa and Ab, and construct the ratio

Rab =
Ab −Aa
δAa + δAb

. (3)

The expected statistical uncertainty is estimated by

δA =

√∫
P (z)W (z)2 dz −

(∫
P (z)W (z) dz

)2

. (4)

Rab is independent of additive and multiplicative constants inW (z). A larger
Rab value indicates that A with the chosen weight is more sensitive to spin.
We wish to choose W (z) to maximize Rab, but we do not want to fine-
tune W (z) for each particular process/model/experiment. We will show for
typical cross-sections of interest that the simple choice W (z) = zn works
well. Although n may be tuned, n = 2 (n = 1) is largely sufficient for
distributions that are forward–backward (non)symmetric under z → −z.

A choice of W (z) that amplifies in the range of z, where the difference
∆P (z) = Pb−Pa is large in magnitude can increase the numerator in Eq. (3).
(Note that ∆P is normalized to zero, so it must change sign.) However,
amplifying this range of z will unbalance the cancellation of statistical fluc-
tuations across the whole −1 ≤ z ≤ 1 range and increase the denominator
in Eq. (3), which must happen since ∆P is normalized. On the other hand,
a uniform choice, such as WCE in Eq. (2), gives equal weight to the whole
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z range, reducing the denominator through cancellation of fluctuations but
not optimizing the numerator. It appears there is a minimization problem
to solve.

Let us consider a concrete example. We compare the lowest order QCD
densities P0 and P1 for spin-0 and spin-1 bosons produced by massless par-
tons and decaying to massless fermion pairs

P0 = 1
2 , P1 = 3

8

(
1 + z2 + 2

c− d
c+ d

z

)
.

The term c−d
c+d arises for general boson–fermion chiral couplings, e.g., it is

non-zero in a parity-violating decay. Consider first the symmetric case c = d,
so that P1 = (3/8) · (1 + z2). We try a class of weight functions

W (z) = |z|n , (5)

with n selected to emphasize contributions from the z intervals with large
∆P (z). Figure 1 confirms the existence of an optimal weight that maximizes
R01. Recalling that confidence limits are determined by R

√
N in the case

of N sample events, WCE would require about 1/3 more events to achieve
the same level of significance as the optimal weight — see Table I. A similar
conclusion holds for parity violating processes (c 6= d), with the results for
the maximal symmetry violation d = 0 shown in Table I. (In this case, we
modified the center-edge weights as W (|z|) → sign(z)W (|z|).) Provided
there is a significant monotonic variation of ∆P from the center to the edge
of the range of z, the optimum weight will be close to quadratic for c = d
and linear for d = 0.

1.5 2.0 2.5 3.0
n

0.105

0.106

0.107

0.108

0.109

R01

Fig. 1. The solid line is the statistical significance ratio R01 for the particular case
of spin-0 and spin-1 bosons decaying to forward–backward symmetric fermions.
R01 is plotted as a function of n in the weight functions W = |z|n. The points are
obtained for discrete choices of n after modulating the leading-order densities Pa,b

by a function (7) simulating experimental acceptance, for α = 6 and β = 0.2.
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TABLE I

The Rab ratio for a boson B decaying to difermions ff or diphotons γγ, computed
for various spins a and b, using WCE and W = |z|n weights with the optimal n
value. Also shown is the percentage increase in the number of events that would
be needed when using WCE to achieve the same statistical significance as with the
optimal W = |z|n.

B → ff Rab with WCE Optimal n, Rab(n) % more events with WCE

a b

0 1 0.095 1.6, 0.1097 34%
0 2* 0.106 4, 0.155 113%
1 2* 0.205 3, 0.264 66%
0 1** 0.45 0.8, 0.52 33%

B → γγ

0 2* 0.239 1.3, 0.272 30%

*(εq = 0.1) and **(d = 0).

These conclusions stay valid when the above lowest-order numerical esti-
mates for Rab are modified by higher-order QCD corrections to P (z), smear-
ing by parton distributions in the case of hadronic collisions, and detector
acceptance constraints. For example, the angular dependence of P (z) can
be modified by the limits ymin < y < ymax(z) on the boson rapidity. We can
explore the impact of these corrections by multiplicatively modulating the
lowest-order parton-level z-dependence of the differential cross section by a
function

m(z) =

M+∆M∫
M−∆M

dM

∞∫
−∞

dy Θ(ymax − y)×Θ(y − ymin)K(y,M) (6)

with a boson mass M , ∆M bin size around the resonance peak, step func-
tions Θ(y) indicating acceptance constraints imposed on the rapidity, and a
function K(y,M) containing all details of QCD corrections, parton distri-
butions, boson propagator, etc. For a typical z distribution, m(z) can be
modeled by

m(z) ∝ (1− zα)β, (7)

where α and β depend on details of the calculation. Figure 2 compares
representative angular distributions for fermionic decays of massive bosons
obtained with ResBos for a particular parameter set, which realistically in-
cludes the effect of PDFs, QCD NLO and NLL corrections, and acceptance
cuts, against calculations using the modulation model (7). We see that the
m(z) function with α and β fitted to the ResBos points captures the general
features of the ResBos predictions.
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Fig. 2. Realistic P (z) for spin-0 (left graph) and spin-1 (right graphs) bosons de-
caying to massless fermions. The data points were generated using ResBos [3] for
boson mass M = 1 TeV produced in pp collisions at

√
s = 14 TeV. This includes

NLO and NLL QCD corrections, CTEQ 6.6 PDFs [9], and a pT > 25 GeV cut
on the fermion’s transverse momentum. The solid lines represent a fit using a
modulated P (z) with m(z) from Eq. (7).

For our purposes of comparing the statistical performance of different
polar weights, the precise values of the powers in (7) are not found to be
crucial. The effect of this modulation on the polar asymmetry is also shown
in Fig. 1. Although the statistical significance is reduced generally, as might
be expected because the acceptance reduces the center-edge asymmetry, the
conclusions about the optimum weight are essentially unchanged.

To demonstrate limitations of the above conclusions in relation to the
overall amount of center-edge symmetry, we may look at the decay distribu-
tion of a spin-2 boson to fermions

P2 = 5
8

(
1− 3z2 + 4z4

)
εq + 5

8

(
1− z4

)
εg . (8)

This depends, in addition, on the fractions of Drell–Yan events εq and εg
produced via qq̄ and gluon–gluon fusion respectively. Under the constraint
εq + εg = 1 at a pp collider, εq typically varies from εq ∼ 0 at very low boson
masses� 1 TeV to εq ∼ 1

2 at 4 TeV. We find that the statistical significance
of an optimized power law W = |z|n is generally much better than WCE

across this range (see for example Table I). However, the advantage reduces
as εq grows. This is because at large εq there is no longer any center-edge
asymmetry at all and center-edge type observables are generally less useful.
The optimal power is, of course, dependent on εq, but a simple universal
quadratic choice W = z2 works very nearly as well.

Another important decay mode for identifying boson resonances is to two
prompt photons, which are relatively clean to identify. The corresponding
tree level probability densities in this case are

P0 = 1
2 , P1 = 0 , P2 = 5

32

(
1 + 6z2 + z4

)
εg + 5

8

(
1− z4

)
εq . (9)
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The statistical significance of the optimized power law and WCE choices for
spin-2 versus spin-0 with acceptance modeled by (7) follows a pattern similar
to the di-fermion final state (see Table I).

Aside from the simple powers, we have also investigated other possible
angular weights, particularly for those that strongly enhance the regions
where ∆P is large, and find they are not superior in statistical significance.
Choosing a weight function that was orthogonal to one of the two raw proba-
bility distributions used in any comparison did not produce better results for
the Rab ratio when the experimental acceptance was taken into account; part
of the reason is that the latter destroys orthogonality. To conclude, the sen-
sitivity of the z = cos θ distribution to the spin of the decaying heavy boson
is increased by generalizing the center-edge asymmetry via Eq. (1) with the
weight function W (z) = zn and n = 2 for a forward–backward symmetric
(n = 1 for a forward–backward non-symmetric) distribution. These findings
are best noticed in a leading-order analysis of the decay angle dependence,
but they are robust against radiative and acceptance corrections arising in
the full NLO differential calculation.
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