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We study quantum electrodynamics in 1+1 dimensions in the light-
front frame using numerical methods. We analyze confinement and charge
screening which are key features of this system. By direct analysis of wave-
functions of bound states in two-parton sector we determine the string ten-
sion. In four-parton sector we introduce inclusive distributions and inspect
structure of energy eigenstates. We conclude that they are composed of two
weakly interacting ff̄ pairs. These four-particle states are responsible for
the screening. Finally, we study time evolution of a fermion–antifermion
state separated by a specific distance. We demonstrate that for sufficient
separation it decays into a multiparton state and the number of particles
in the product depends on separation of particles.
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1. Introduction

Quantum electrodynamics in 1+1 dimensions is the simplest nontrivial
gauge field theory. Still, it retains some important features of 4-dimensional
QCD, confinement being the most remarkable. For these reasons it has been
extensively studied in many aspects. The model is soluble in two limits. For
zero mass it becomes a theory of free bosons [1] while for vanishing coupling
it is a free Dirac theory. Both approximations, small and large mass were
studied e.g. by Coleman [2]. An approach using perturbation theory in the
small mass limit was presented in [3].
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Apart from analytical methods, the Schwinger model was also solved on
the lattice, e.g. by Schiller [4]. Another successful technique the light-front
frame quantization. It was first proposed by Susskind [5] and developed
by Chang et al. [6]. First application of the light-front formalizm to the
two-dimensional Schwinger model was performed by Brodsky et al. in [7, 8].
This formulation opened the possibility to compute energies of the system
by numerical methods for any mass parameter m. As the method proved
useful in this simple case, it was later applied to more complex theories as
QCD in 3+1 dimensions.

A well known feature of the massive Schwinger model is that for small
coupling constant the system may be well approximated by a fermion and
antifermion with a linear potential between them [2]. Linearity of the po-
tential heavily relies on having only one spatial dimension. Due to this fact
fermions are confined. The string tension, which is the proportionality con-
stant between energy end separation of partons, was found e.g. in [9–11]. It is
also known [9] that the interaction of largely separated fermion–antifermion
pair is screened due to vacuum polarization.

The aim of this paper is to show how above results can be read directly
from numerical data obtained in the light-front quantization. In particular,
we get the linear energy dependence and determine the string tension. We
also study the structure of 4-particle bound states which are responsible
for the screening. In order to handle the problem of visualizing probability
distribution of 4-particle state, we use inclusive which are widely used rather
in the context of scattering. Finally, we demonstrate how two charges at
large distances are screened by vacuum polarization.

Outline of the paper is as follows. In Sec. 2 we present the light-front
quantization method of the massive Schwinger model. In Sec. 3 we show
numerical results for masses and construction of wavefunctions. Section 4 is
devoted to considerations in the 2-particle sector, where the linear potential
emerge. In Sec. 5 we discuss the structure of bound states with 4-particle
components responsible for the screening. In Sec. 6 we demonstrate that a
widely separated ff̄ pair indeed decays into multi particle state. Results
are summarized in Sec. 7.

2. The model

The theory is quantized following closely [8] and their notation. The
Lagrangian of the massive Schwinger model reads

L = iψ̄γµ∂µψ −mψ̄ψ − 1
4F

µνFµν − gψ̄γµψAµ . (1)

We work in the light-front coordinates x± = x0 ± x1 and in the light-front
gauge A+ = 0. The only independent field is ψ+(x) ≡ Λ(+)ψ(x), where
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Λ(+) = 1
4γ
−γ+ is a projection operator. The field is quantized at the equal

light-front time x+

{ψ+(x), ψ+(y)}x+=y+ = Λ(+)δ(x− − y−) (2)

with periodic boundary conditions. Field ψ+(x) is expanded in Fourier
modes

ψ+(x) =
u√
2L

∞∑
k=1

(
bke
−iπkx−/L + d†ke

iπkx−/L
)
. (3)

Operators b†k and d†k create fermion f and antifermion f̄ with light-front
momentum p+ = 2πk/L. u is a spinor satisfying Λ(+)u = u, u†u = 1. There
are three conserved quantities, the charge Q, the light-front momentum P+

and the Hamiltonian P−

Q =
∑
k=1

(
b†kbk − d

†
kdk

)
, (4)

P+ =
2π

L
K ≡ 2π

L

∑
k

k
(
b†kbk + d†kdk

)
, (5)

P− =
L

2π

(
m2H0 +

g2

π
V

)
, (6)

where the specific form of a free Hamiltonian H0 and potential V is given
in [8]. Charged states have infinite energy for any value of g, so we con-
sider only states with zero charge, hence equal number of fermions and
antifermions. In the continuum limit the light-front resolution K and size of
the space L are infinite while P+ is kept finite. Our aim is to find eigenvalues
and eigenstates of the invariant mass operator M2 = P+P−.

3. Numerical results

We diagonalizeM2 on eigenspaces of fixed light-front resolution K which
is possible since M2 and K commute. Basis of the Fock space consists
of states of the form |{ki}, {k̄j}〉 = |k1, . . . , kN , k̄1, . . . , k̄N 〉 ≡ b†k1 , . . . , b

†
kN
,

d†
k̄1
, . . . , d†

k̄N
|0〉. Due to the relation K =

∑
ki, K simultaneously limits

parton number ki and number of partons 2N , hence size of the Hilbert space.
Therefore, M2 becomes a finite matrix and can be diagonalized numerically.
Physical values of mass are obtained in the limit K → ∞. The matrix M2

does not depend on L. In Fig. 1 we present the lower spectrum of M2 for
K = 25 as a function of a fermion mass m. The spectrum coincides with
spectra of soluble models in limits m→ 0 and m→∞. Plotted eigenvalues
already converged with K.
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Fig. 1. First 20 eigenvalues of the M2 matrix as functions of m/g. The light-front
resolution is K = 26. Lines on the left and right of the plot are masses in the
massless and free limit respectively.

Given the matrix of the mass operator, we obtain not only eigenvalues
but also eigenvectors. From these, we can read wavefunctions of bound
states. A state |φ〉 can be written as a superposition of states with definite
number of particles

|φ〉 =

Nmax∑
N=1

|φ2N 〉 , (7)

|φ2N 〉 =
∑
ki,k̄j

α2N

(
ki, k̄j

) ∣∣ki, k̄j〉 , i, j = 1, . . . , N . (8)

Note that momenta do not have proper dimensions. Coefficients α can be
read from eigenvectors of the matrix. Wavefunction φ2N (ki, k̄j) of state
|φ2N 〉 is given by coefficients α2N antisymmetrized under the transforma-
tions ki ↔ kj and k̄i ↔ k̄j . Notice that the momentum of the ith parton
ki is dimensionless and corresponds to physical momentum p+

i = 2πki/L.
A wavefunction in momentum space is given by the Fourier transform

φ2N (x−i , x̄
−
j ) =

∑
ki,k̄j

exp

(
−πi
L

∑
n

(
x−n kn + x̄−n k̄n

))
φ2N

(
ki, k̄j

)
. (9)

Since K is fixed and
∑

i(ki + k̄i) = K, the wavefunction depends only on
differences of positions, while dependence on one coordinate is trivial. This
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coordinate can be chosen arbitrarily and we choose x̄N . Then,

φ2N (x−i , x̄
−
j ) = e−

i
2
P+x̄−Nφ2N

(
∆i, ∆̄j

)
, (10)

where ∆i = x−i − x̄
−
N , i = 1, . . . , N and ∆̄j = x̄−j − x̄

−
N , j = 1, . . . , N − 1.

In what follows, we will be interested only in wavefunctions in 2 and 4
parton sectors, i.e. N = 1, 2.

4. Two-particle sector

The wavefunction of two-partons can be written as

φ2(x−, x̄−) = e−
i
2
P+x̄−φ2(∆) , (11)

where x− is position of a single fermion f , x̄− is position of an antifermion f̄
and ∆ = x− − x̄−. Plot of |φ2(∆)|2 for several states is presented in Fig. 2.
The probability distribution |φ2(∆)|2 has two sharp peaks at ∆ = ±∆∗,
whose width is proportional to 1/P+. For highly excited states widths of
peaks are small compared to ∆∗ and, therefore, the distance between two
particles is well defined. Thus,M2 can be represented as a function of ∆∗. It
turns out that the relation is linear. A linear fit yieldsM2 ≈ m2

0+ 1
2P

+g2∆∗.
It reflects linearity of the potential V in the two-particle sector.

1st 50th 100th
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ÈΦ2HDL 2
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D

-L 0 L
D

-L 0 L
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Fig. 2. Probability distribution of ∆ for different energy states. For high states
width of peaks at ±∆∗ is small compared to ∆∗. Plot was made for m = 1,
g = 0.3. For smaller g peaks are wider and the function |φ2(∆)|2 is nonzero inside
the interval (−∆∗, ∆∗).

5. Four-particle sector

Let us now con consider 4-particle sector. The wavefunction again can
be written as

φ4(x−1 , x
−
2 , x̄

−
1 , x̄

−
2 ) = e−

i
2
P+x̄−2 φ4

(
∆1, ∆2, ∆̄1

)
. (12)
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Variables x−1 , x
−
2 are positions of fermions and x̄−1 , x̄

−
2 are positions of an-

tifermions. We construct inclusive distributions [12] of the form

D(∆) =

∫
d∆1d∆2d∆3δ(∆− |∆ij |)|φ4(∆1, ∆2, ∆3)|2 , (13)

where ∆ij = x−i −x
−
j is the relevant distance. We are particularly interested

in the following profiles

• Dff (∆), where ∆ij = ∆12 = x−1 − x
−
2 is the relative distance between

two fermions f ,

• Dff̄ (∆), where∆ij = ∆11̄ = x−1 −x̄
−
1 is the distance between a fermion

f and an antifermion f̄ ; due to antisymmetry of ψ4(x1, x2, x̄1, x̄2) par-
ticular choice of fermion and antifermion is arbitrary,

• Dnn
ff̄

(∆), where ∆ij = ∆11̄ and an additional factor Θ(|∆12̄| − |∆11̄|)
under the integral is present; this profile is the probability distribution
of the distance between a fermion and the nearest antifermion.

A priori the eigenvectors of matrix M2 can have components with arbi-
trary parton numbers. However, we observe that several lowest mass states
are almost exclusively composed of the two-particle states. Next, there is a
sequence of states in four-particle sector. For higher g, the binding energy
at given distance is larger. Therefore, smaller distance is needed to reach
energy required to create an additional pair and the four particle sector
appears earlier.

Inclusive distributions for first and second eigenstates in four-particle
sectors are shown in Figs. 3 and 4. In both cases, the function Dnn

ff̄
(∆)

is highly peaked at the origin and vanishes almost exactly elsewhere. It
means that the fermion f at ∆ = 0 forms a pair with an antifermion f̄ .
FunctionDff (∆) is zero at the origin. This is reflection of the Pauli exclusion
principle. For the lowest energy state in four-particle sector Dff (∆) weakly
depends on ∆. For higher states, it grows faster for small ∆ and exhibits
oscillatory behavior for larger ∆. Function Dff̄ (∆) is peaked at ∆ = 0.
This peak is directly related to the peak of Dnn

ff̄
(∆). Then, it has maxima

approximately at the same positions at which Dff (∆) has maxima. These
correspond to an antifermion f̄ which forms a pair with the other fermion f .
The dependence of Dff (∆) on ∆ is so weak because the two ff̄ pairs are
neutral and interact indirectly only due to the exclusion principle among
constituents. Therefore, they can move almost independently.



String Picture of 1+1 Dimensional QED in Light-front Formulation 269

L
D

D
f f
nn HDL

L
D

D
f f

HDL

L
D

D f f HDL

Fig. 3. Four-particle inclusive distributions for 7th state of the spectrum for
m/g = 1. This is the lowest state with non-negligible contribution from four-
particle sector. The contribution from two-particle sector is smaller than 0.1%.
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Fig. 4. Four-particle inclusive distributions for 8th state of the spectrum for
m/g = 1. The contribution from two-particle sector is smaller than 1%.

6. Decay of ff̄ state

From above considerations, we infer that when a ff̄ pair is separated by
a distance which is large enough, there exists a four-particle state composed
of two ff̄ pairs which has smaller energy. Then a single pair can decay
into two pairs. We checked it explicitly using evolution in the light-front
time. Let us construct a pair of f and f̄ separated by a distance ∆∗. This
is obtained by taking a mass eigenstate in two-particle sector, for which
the separation is well defined. Then let us evolve it in the light-front time
x+ using the Hamiltonian P−. Finally, we plot contribution of each multi-
particle sector (branching ratio) to the evolved state as a function of x+.
Results are presented in Fig. 5.

One can see that for small distance ∆∗ the state remains in the two-
particle sector. This is because each state with at least 4 partons has higher
energy than the initial state. The potential energy of the two particles is
not high enough to create additional fermions. For ∆∗ = 22.7/P+ the initial
ff̄ pair decays into four particle state. The half-life time can be read from
the plot and is x+ = 1.04P+/g2 for the ratio m/g = 0.5. For yet larger
distance the initial state decays into four and six particles. The half-time of
the ff̄ particle is much shorter since the potential energy is larger.
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Fig. 5. Evolution of distribution of number of particles. Initial state consists of
ff̄ pair at given distance ∆∗. Values of x+ are given in units P+/g2. Plots are
made for m/g = 0.5. For small distance the state remains in the two-particle
sector. For larger ∆∗ it decays into four-particles. For ∆∗ = 93.4/P+ it decays
into four-particles.

We conclude that an ff̄ pair can decay into multi-particle states if the
separation of partons is large enough and subsequently potential energy is
sufficient. The number of particles into which it decays as well as the halt-life
depends on separation ∆∗.

7. Conclusions

Summarizing, the inclusive distributions give us a better insight into the
structure of bound states of the multiparton system. We observed that in
the two-particle sector the distance between fermion and antifermion is well
defined for bound states. We established relation between invariant mass and
separation, showed that it is linear and extracted the string tension. Then
we investigated low energy bound states with four-particles. It turned out
that they consist of two ff̄ pairs which are almost independent. Finally,
we conjectured that a pair can decay into multi-particle state whenever
its potential energy is sufficient. This statement was confirmed by direct
evolution of single pairs with different separations ∆∗. If the separation is
large enough, more pairs are created. The time of creation and number of
created particles depends on the initial potential energy. Additional particles
screen the interaction of the initial pair.
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