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EMERGENT ADS/QCD∗
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We elaborate on the correspondence between a non-conformal 4d quan-
tum field theory over the Minkowski space — e.g. quantum chromody-
namics or an extension of the standard model that breaks the electroweak
symmetry dynamically — and a 5d description over an AdS spacetime.
Among other things, we are tracing contributions that break the confor-
mal symmetry in the 4d theory to the warping of the 5d geometry, which
resembles the soft-wall model.
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Quark-interchange dominance refers to the dominance of the exchange
of quarks over the exchange of gluons in, for example, large-angle hadron–
hadron scattering [1]. Among other things, it explains why at low ener-
gies the differential cross-section in proton–proton scattering scales with the
Mandelstam variables like dσ

dt ∝ s−2u−4t−4 [2] and not like dσ
dt ∝ t−8 [3] as

would be expected from gluon exchange.
The simplest object that describes the dominant diagrams without dy-

namic glue (see, e.g. Fig. 1 or the corresponding crossed diagram) is the
generating functional

Z =

∫ [
dψ̄
]

[dψ] ei
∫
d4xψ̄(i /D−m)ψ . (1)

Here, for the sake of simplicity, we have limited ourselves to one fermionic
flavour with mass m and to a vectorial source V µ, which is contained in the
‘covariant derivative’Dµ = ∂µ−iV µ. The inclusion of further sources and/or
flavours is straightforward and does not influence the following discussion
fundamentally. Using scalar quarks has also no major impact, but allows
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Fig. 1. A dominant diagram. Double lines are for hadrons, single for quarks.

us to avoid one more integration or finite-dimensional trace. Hence, we
continue with the generating functional

ln z = −1
2Tr ln

(
D2 +m2

)
(2)

and comment on the fermionic result at the end. Next, we express the
logarithm with the help of a proper time integral,

ln z =
1

2
Tr

∞∫
ε

dT

T
e−T(−D2+m2) , (3)

where we have continued to Euclidean space and introduced a proper-time
regularisation T ≥ ε > 0. (Subtracting the source-free part would permit us
to take the limit ε→ 0.)

Next, we carry out the functional trace in the basis spanned by the eigen-
functions of the position operator and by converting into a one-dimensional
path-integral representation,∫

d4x〈x|eTD2 |x〉 =

∫
[dp]

∫
P

[dx]e
∫ T
0 dτ [ip·ẋ+D2(x,p)] . (4)

Because of the trace the path-integral runs over periodic paths x(0) = x(T ).
Subsequently, we integrate out the functional integral over the momentum p
and obtain the effective action in the world-line formalism [4]

ln z =

∞∫
0

dT

T 3
e−m

2T

∫
d4x0︸ ︷︷ ︸

warped (soft−wall) AdS measure

N
(4π)2

∫
P

[dy]e
−
∫ T
ε dτ

(
ẏ2

4
+iẏ·V̇

)

︸ ︷︷ ︸
=L

. (5)

The generating functional now appears in the form of an effective Lagrangian
L integrated over a soft-wall–warped [5] AdS measure, which motivates the
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present comparison of (1) to a soft-wall AdS/QCD description. (If we assume
m to be the constituent and not the current quark mass, the warp parameter
m2 is even of the phenomenologically preferred order of magnitude.) T takes
the role of the fifth coordinate in the (unwarped) parametrisation d2s =
dT 2

T 2 + dx·dx
T . The integration over the variable xµ0 has been split off, xµ =

xµ0 + yµ, such that
∫ T

0 dτyµ = 0 and ẋµ = ẏµ. This is important for two
reasons; it will make manifest energy-momentum conservation and will allow
for the inversion of the corresponding propagator when integrating out the
variable y, as x0 constitutes a zero mode. N cancels the normalisation
of the source-free [dy] integration, which leaves an extra factor of (4πT )−2.
The above proper-time regularisation is directly analogous to the AdS/QCD
UV regularisation, where the UV brane is not put directly at T = 0 but
T = ε > 0. Furthermore, the effective Lagrangian L is locally invariant
under chiral rotations of the source V , which is another feature of AdS/QCD
models, where the chiral symmetry of the 4d theory becomes the gauge
symmetry of the 5d description. This can be made manifest by rewriting
the interaction part of the effective Lagrangian L in form of a Wilson loop,

L =
N

(4π)2

∫
P

[dy]e−
∫ T
0 dτ ẏ2

4 e−i
∮
dy·V . (6)

A correspondence between an a priori 4d computation and deformed
AdS/QCD models has also been found in light-front holography [6]. There
the fifth-dimensional coordinate T is identified with ζ2 = x(1− x)~b2⊥, where
x stands for the light-front momentum fraction x of one of the mesonic con-
stituent and ~b⊥ for the transverse separation of the constituents. ζ is the
invariant separation between the constituents. Different deformations of AdS
space, which in these AdS/QCD models account for the breaking of confor-
mal invariance by confinement correspond to different interquark potentials
of the 4d formulation. In particular, the soft-wall warping corresponds to a
harmonic oscillator potential.

In the present study, due to the periodicity condition of the path-inte-
gration, T is also a measure for the separation between the constituents,
as it limits the size of the closed orbit; at this point there is, however, no
one-to-one correspondence to ζ2.

For the sake of concreteness let us take a look at certain correlators. To
this end, we integrate out the field y from Eq. (6) and obtain

L ⊂
∞∑
n=0

(−i)n

n!

n∏
j=1

∫ d4qj
(2π)4

T∫
0

dτj

n

e−ix0·(
∑n

i=1 qi)

(4π)2
ln , (7)

ln = e
1
2

∑n
i,j=1(Gijqi·qj+2iĠij Ṽi·qj+G̈ij Ṽi·Ṽj) , (8)
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which is the master formula of Bern and Kosower [7]. Here Gij = G(τi, τj)
stands for the world-line propagator, which satisfies the equation of motion

1

2

d2

dτ2
G
(
τ, τ ′

)
= δ

(
τ − τ ′

)
− 1

T
. (9)

(The additional inhomogeneity 1
T on the left-hand side is required to have

net-zero charge in our compact space (interval) to have a well-defined Poisson
problem.) Ġij and G̈ij stand for the first and second derivatives, respectively,
of the propagator with respect to its first argument. Ṽj = Ṽ (qj) stands for
the Fourier transform of the source. The d4x0 integration will impose energy-
momentum conservation, as it only concerns the Fourier phase in Eq. (7).
“⊂” indicates that not all terms of the right-hand side contribute to the
effective Lagrangian L but only those that at order n are linear in all n Ṽi.
Then the two-point function reads

∫
d4x0L2 = − 1

32π2

∫
d4q

(2π)4
T 2

1∫
0

dτ̂s2 , (10)

s2 = e−G12q2 Ṽ ∗µ (q)Ṽν(q)Ġ2
12

(
−qµqν + q2ηµν

)
. (11)

Now, let us compare this expression to the result from a soft-wall AdS/
QCDmodel. There the 4d sources are extended to 5d fields, V (x)→ V(x, T ).
The two-point function is encoded in the quadratic action

S5D
2 = −1

4

∫
d4x

dT

T 3
e−m

2T gµκgνλVµνVκλ , (12)

which, according to the holographic dictionary, does not feature an explicit
fifth-dimensional mass term for this vector field with fermionic constituents.
It must be evaluated on the classical solution, which leaves a surface term
at small values of T , which me must choose as ε rather then 0 for the sake
of regularisation. After a 4d Fourier transformation, at the saddle point of
this action the transverse modes obey the equation of motion(

4∂2
T + q2/T −m4

)
e−m

2T/2 ˜̆Vν(q, T ) = 0 . (13)

One boundary condition for this second-order equation is given by ˜̆Vλ(q, ε) =

Ṽλ(q)ṽ(q, ε) with ṽ(q, ε) = 1. As a consequence, the action evaluated on the
classical solution reads

S̆5D
2 =

1

2

∫
d4q

(2π)4
e−m

2ε

(
qνqλ

q2
− ηνλ

)
Ṽ ∗ν (q)Ṽλ(q) [∂T ṽ(q, ε)] . (14)
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The standard prescription is to select the normalisable solution in lieu of the
second boundary condition. In that case

ṽ(q, T ) = Γ
(

1− q2

4m2

)
TU

(
1− q2

4m2 , 2,m
2T
)

(15)

and to leading order in small ε (the position of the ultraviolet brane)

∂T

[
Γ
(

1− q2

4m2

)
TU

(
1− q2

4m2 , 2,m
2T
)]
≈ −q

2

4
ln
(
m2T

)
. (16)

The purely 4d result in Eq. (10) features the same leading small-ε be-
haviour after identifying the two regularisation parameters, proper time and
UV-brane position. The two results differ for subleading terms.

The 4d result can be reproduced exactly by adopting

∂T ṽ(q, ε) ∝ q2

1∫
0

dτ̂(1− 2τ̂)2

∞∫
0

dT

T
e−T [m2−q2(τ̂−τ̂2)] (17)

as second boundary condition instead of the usually invoked normalisabil-
ity of the AdS/QCD solution. Choosing the normalisable solution instead,
we get

∂T ṽ(q, ε) = −q
2

4

[
ln
(
εm2

)
+ γ + ψ

(
1− q2

4m2

)
+ γ
]
. (18)

The finite part can be expressed as

γ + ψ
(

1− q2

4m2

)
= m2

∞∫
0

dT
e−m

2T − e
−
(
m2− q2

4

)
T

1− e−m2T

= m2
∞∑
n=1

∞∫
0

dTe−nm
2T 2

[
eq

2G(0) − eq2G( 1
2)
]
. (19)

On the second line, we have reexpressed the fraction by a geometric series,
reflecting the presence of a tower of states with a constant spacing between
their squared masses, known for the soft-wall model. Furthermore, we have
exploited that the world-line propagator that solves Eq. (9), i.e.

G(τ̂) = T
(
τ̂ − τ̂2

)
, (20)

where τ̂ = τ/T , takes the minimum value G(0) = 0 and the maximum value
G(1

2) = T
4 . Finally, the expression in square brackets can be rewritten as

eq
2G(0) − eq2G( 1

2) =

1∫
0

dτ̂Ġeq
2G = 2

G( 1
2)∫

G(0)

dgĠ [τ̂(g)] eq
2g , (21)



32 D.D. Dietrich

which is close to what we arrive at in the above purely 4d computation, but
with one important difference: In the 4d set-up there appears another factor
of the first derivative of the world-line propagator,

1∫
0

dτ̂Ġ2eq
2G = 2

G( 1
2)∫

G(0)

dgĠ [τ̂(g)] eq
2g . (22)

An analogous mismatch exists if we return to the original fermions instead
of the scalars, where, up to a numerical factor, Ġ2 is replaced by G. This
means that the 5d set-up corresponds to a different 4d setting in which
the conformal symmetry is not (only) broken by a mass term, but also an
interquark potential. (The determination of the latter is left for later work.)
This is also in line with the observation that light-cone holography contains
such a potential as one of its ingredients.

In conclusion, in a kinematic setting, where contributions from dynam-
ical gluons are subdominant, we elaborated on the correspondence between
a 4d and a 5d description. Both descriptions share the same dominant UV
behaviour. The 5d description could be made to coincide with the 4d for
selected boundary conditions, albeit not for the canonical choice. The corre-
spondence becomes quantitatively close when adopting constituent instead
of current quark masses. Adjusting the 4d to the 5d approach the 4d must
be extended to incorporate an infinite tower of states with evenly spaced
squared masses. This, however, is not enough for matching the two descrip-
tions, but the introduction of an interquark potential is necessary as known
from light-front holography.
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