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Quantum mechanical description of neutrino oscillations can be de-
veloped in terms of the Gell-Mann–Goldberger formal theory of scatter-
ing [M. Gell-Mann, M.L. Goldberger, Phys. Rev. 91, 398 (1953)] provided
that the theory is slightly extended [S.D. Głazek, A.P. Trawiński, Phys.
Rev. D85, 125001 (2012)]. The extension is needed because Gell-Mann and
Goldberger considered only a very short period of time after a long incoming
beam-preparation process ends and before a long outgoing transition-rate
counting process starts, while in the case of neutrino oscillations the cor-
responding period of time is much longer than the beam-preparation and
transition rate-counting processes. Besides the standard form of Hamilto-
nian dynamics, a slightly extended formal theory of scattering can also be
defined in the so-called front form of Hamiltonian dynamics. The front form
was distinguished by Dirac as particularly interesting in the context of par-
ticle physics [P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949); P.A.M. Dirac,
The Mathematical Foundations of Quantum Theory, ed. A.R. Marlow, Aca-
demic Press, 1978, pp. 1–8]. We present here an example of a description
of neutrino oscillations in the front-form version of the required scattering
theory [S.D. Głazek, A.P. Trawiński, Phys. Rev. D87, 025002 (2013)].
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1. Introduction

In order to discuss neutrino oscillations, let us focus on the example of
a typical long-baseline experiment called T2K [1]. In this experiment, the
pion beam generated in Tokai is injected into a 100 m long tunnel. After
a split-microsecond of free propagation (the pion half-life is τπ ∼ 1 µs),
pions decay into neutrinos and muons. The neutrino detector is located in
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Kamioka 295 km away. It takes at least 1 millisecond for light to travel this
distance. A neutrino interacts with a neutron in Kamioka and thus a muon
is created and subsequently detected in the Super Kamiokande detector, see
Fig. 1 (left). The proton produced from the neutron is typically not observed.
Fig. 1 (right) shows that the counting rate of muons with energies of about
600 MeV in Kamioka is much smaller than expected without account of the
neutrino oscillations.

Fig. 1. Left: The thick lines represent word-lines of particles. The z-axis extends
from Tokai to Kamioka. Neutrinos propagate over front-form “time” x+ ∼ 2L/c ∼
2 ms, where L = 295 km is the distance between Tokai and Kamioka. Right:
First Muon-Neutrino Disappearance Study with an Off-Axis Beam [1]. The “re-
constructed energy” on the horizontal axis refers to intermediate neutrinos and the
“number of events” refers to detection of muons in Super Kamiokande.

1.1. Standard interpretation of neutrino oscillation

The phrase neutrino oscillations was introduced by Pontecorvo in 1967
in a context of his study of the weak processes [2] that could become mani-
fest when neutrinos propagate over long distances. Bilenky and Pontecorvo
derived a formula for neutrino oscillations in 1977 [3]. Even if no weak
processes interfere with neutrino propagation, the phase of a neutrino state
changes with time t and in a linear combination of neutrino states with dif-
ferent energies the relative phase of their contributions changes with time.
The neutrino oscillation occurs when the e-, µ- or τ -neutrino are composed
of states with well defined masses mi, |να〉 =

∑
i Uαi|νi〉, where α = e, µ, τ .

The probability that a µ-neutrino produced in Tokai will be detected in
Kamioka

Pνµ→νµ =

∣∣∣∣∣∑
i

|Uµi|2 ei
m2
i

2Eν
L

∣∣∣∣∣
2

≈ 1− sin2 (2θ23) sin2

(
∆m2

23

4Eν
L

)
(1)



Neutrino Oscillations in Hamiltonian Dynamics 275

can be smaller than 1. It depends on the ratio of distance L to neutrino
energy Eν . For selected values of L/Eν , the µ-neutrino detection probability
decreases to nearly zero. This effect can explain the deficit of muon counts in
Kamioka shown in Fig. 1 (right). The angle θ23 is related to coefficients Uαi
and characterizes the electroweak interactions. The oscillation formula (1)
can be fitted to the experimental results and such fits also yield most prob-
able values of the differences of neutrino masses squared, which are basic
items of information about the world of particles.

The relativistic quantum-mechanical basis of the formula (1) is provided
by quantum field theory. For example, the theory helps in removing con-
ceptual ambiguities related to the facts that (i) the detected particles are
muons, rather than neutrinos, (ii) different neutrinos carry the same phys-
ical transfer of energy and momentum in a single event, and (iii) a single
event includes the neutrino creation, propagation, and transformation into a
final muon. Several theoretical issues related to these facts have been exten-
sively discussed in literature [4–16]. Sources of relevant experimental results
are available as Refs. [1, 17–20]. In view of its expected utility in particle
physics [21–23], we explain below how the same facts can be accounted for
in the front form (FF) of Hamiltonian dynamics.

2. The front-form neutrino oscillation formula

In the FF approach, the Hamiltonian P− = P−0 + P−I is used to build
incoming state |Ψi〉 of energy p−i over time 1/ε− from the corresponding
eigenstate |φi〉 of P−0 in such a way that the Schrödinger equation with full
Hamiltonian P− is satisfied [23]. Namely,

∣∣Ψi

(
x+
)〉

=
ε−

2

0∫
−∞

dX+ eε
−X+/2e−iP

−(x+−X+)/2 ∣∣Φi

(
X+
)〉

(2)

= e−iP
−x+/2 i ε−

p−i − P− + i ε−
|φi〉 . (3)

The transition rate of the evolving system to the final state |φf〉 is given by
the derivative of the probability that the system is in state |φf〉 with respect
to the laboratory time t

Pfi

(
x+
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=
d

dt

|A (x+) |2

||Φf ||2||Ψi||2
, (4)

where A(x+) is the scattering amplitude
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The norms of the states are constant. Using, the identity ∂x+ = ∂t
∂x+

∂t +
∂z
∂x+

∂z , and constancy of z in a standard long-baseline experiment in the
laboratory frame of reference, ∂z

∂x+
= 0 and ∂t

∂x+
= 1/2, one obtains

d

dt

∣∣A (x+
)∣∣2 =

d
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= 〈φf |P−I e
i(p−f −P

−
0 )x+/2 iε−

p−i − P− + iε−
|φi〉 . (7)

The parameter ε−, which in the T2K experiments is ∼ 10−9 eV, smoothes
out the transition rate as a function of energies of the initial and final states.

2.1. Example of a scattering amplitude calculation

Since in the T2K energy range neutrinos carry momenta on the order
of 1 GeV, their interactions with hadrons can be approximately described
without considering Hamiltonians for quarks and intermediates bosons. In-
stead, one can define P− =

∫
dx−d2x⊥P− using the density P− obtained

from the effective Lagrangian density L = L0 + LI, where [24, 25]

L0 =
∑
ψ

ψ̄(i/∂ −mψ)ψ + ∂µπ
†∂µπ −m2

ππ
†π , (8)

LI = gµ̄γα(1− γ5)νµ p̄γα(1− gAγ5)n− if ν̄µγα(1− γ5)µ ∂απ
† + h.c. (9)

The coupling constants are g = GF√
2

cosϑC and f = Fπ√
2
. Solving the FF

constraint equations in a series expansion in powers of g and f , one obtains
the density P− = P−0 + P−1 + P−2 + O(g2, f2), where P−1 denotes terms
order g or f and P−2 denotes terms order gf . Inserting the corresponding
P− = P−0 + P−1 + P−2 in Eq. (7), one arrives at the leading expression
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The first term in the square bracket contains neutrinos or anti-neutrinos in
the intermediate states. The second term is a FF instantaneous interac-
tion that traditionally is called a seagull. In T2K, the physical momentum
transfer from Tokai to Kamioka has a positive + component, p+

ν > 0, and
only neutrino intermediate states contribute. The seagull contribution is
negligible. Thus,
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where Vµp,nνi and Vµ̄,π+νi denote due vertex factors. Different neutrinos
contribute with different |Uµi|2 and phase factors in numerator and different
denominators Di, the vertex factors being negligibly different. The result is
that for x+ = 2L
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2.2. The neutrino interference pattern

The origin of the standard neutrino oscillation formula is visible in Eq. (12).
The three amplitudes appear in a sum and interfere with each other in the
modulus squared that enters a cross section. This interference pattern is
analogous to the interference pattern that is familiar from the elementary
quantum slit experiment. The analogy is illustrated in Fig. 2. The role of a
slit is played by the FF on-mass-shell “energy” p−νi . The number of “energy
slits” participating in the interference depends on the size of ε−; it must
be large enough for all potentially available neutrino intermediate states to
contribute. This is explained in Fig. 3.
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Fig. 2. Schematic representation of the interference of amplitudes mediated by
virtual states with neutrinos of different FF free energies p−νi due to their different
masses mi assumed here to increase with the number i. The FF energy uncertainty
ε− must be large enough to create the interference pattern in total counting rate
of muons in a far detector that is conventionally called “neutrino oscillation.”
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Fig. 3. Qualitative plots of the function |
∑3
i=1 1/Di(pν)| in arbitrary units in two

cases: (a) ε− = 0 and (b) ε− 6= 0. The neutrino masses mi are assumed to increase
with i. The larger ε− in comparison to ∆m2

ij/p
+
ν , the more accurate the standard

oscillation formula, because the wider the width ε−p+ν the more neutrino interme-
diate states uniformly contribute to the muon counting rate in the far detector.

3. Conclusion

The relativistic Hamiltonian interpretation of neutrino oscillation does
not involve wave packets, does not refer to a concept of a neutrino state
as a superposition of mass eigenstates, and does not involve the Feynman
propagators for individual particles. Instead, the Hamiltonian interpretation
says that the total probability amplitude for producing a muon in the far
detector is a sum of amplitudes coming from virtual intermediate states with
neutrinos of different masses. In the leading approximation, the detection
rate of muons in the far detector is proportional to the standard formula,
but only for sufficiently light neutrinos that can fit into the range of p−
allowed by ε−. This means that heavy sterile neutrinos cannot contribute
to oscillations in the low-energy experimental setups such as T2K.

This work was supported by the Foundation for Polish Science Interna-
tional Ph.D. Projects Programme co-financed by the EU European Regional
Development Fund.
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